PCL点云变化检测C++代码
时间: 2023-07-11 16:47:56 浏览: 167
使用C++与PCL详细过程版实现的点云转强度图像
5星 · 资源好评率100%
以下是一个简单的 PCL 点云变化检测的 C++ 代码示例:
```cpp
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/visualization/pcl_visualizer.h>
int main(int argc, char** argv)
{
// 读取第一个点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in(new pcl::PointCloud<pcl::PointXYZ>);
if (pcl::io::loadPCDFile<pcl::PointXYZ>("cloud_in.pcd", *cloud_in) == -1)
{
PCL_ERROR("Couldn't read file cloud_in.pcd! \n");
return (-1);
}
std::cout << "Loaded " << cloud_in->size() << " data points from cloud_in.pcd" << std::endl;
// 读取第二个点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out(new pcl::PointCloud<pcl::PointXYZ>);
if (pcl::io::loadPCDFile<pcl::PointXYZ>("cloud_out.pcd", *cloud_out) == -1)
{
PCL_ERROR("Couldn't read file cloud_out.pcd! \n");
return (-1);
}
std::cout << "Loaded " << cloud_out->size() << " data points from cloud_out.pcd" << std::endl;
// 下采样
pcl::VoxelGrid<pcl::PointXYZ> sor;
sor.setInputCloud(cloud_in);
sor.setLeafSize(0.01f, 0.01f, 0.01f);
sor.filter(*cloud_in);
std::cout << "cloud_in after filtering: " << cloud_in->size() << std::endl;
sor.setInputCloud(cloud_out);
sor.filter(*cloud_out);
std::cout << "cloud_out after filtering: " << cloud_out->size() << std::endl;
// ICP 配准
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputSource(cloud_in);
icp.setInputTarget(cloud_out);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_icp(new pcl::PointCloud<pcl::PointXYZ>);
icp.align(*cloud_icp);
std::cout << "ICP has converged with score: " << icp.getFitnessScore() << std::endl;
// 可视化
pcl::visualization::PCLVisualizer viewer("ICP demo");
int v1(0), v2(0);
viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v1);
viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v2);
viewer.setBackgroundColor(0, 0, 0, v1);
viewer.setBackgroundColor(0.05, 0.05, 0.05, v2);
viewer.addPointCloud(cloud_in, "cloud_in", v1);
viewer.addPointCloud(cloud_out, "cloud_out", v2);
viewer.addPointCloud(cloud_icp, "cloud_icp", v2);
viewer.spin();
return 0;
}
```
该代码使用 PCL 库实现点云的下采样和 ICP 配准,并使用 PCL 可视化工具可视化结果。请注意,此示例仅针对简单的场景,实际应用中需要根据具体情况进行调整。
阅读全文