birnn-lstm-crf模型代码
时间: 2023-08-27 13:06:51 浏览: 116
LSTM+CRF模型项目完整代码
5星 · 资源好评率100%
以下是一个简单的基于BiLSTM-CRF模型的代码示例:
```python
import torch
import torch.nn as nn
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
super(BiLSTM_CRF, self).__init__()
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.vocab_size = vocab_size
self.tag_to_ix = tag_to_ix
self.tagset_size = len(tag_to_ix)
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True)
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))
self.transitions.data[tag_to_ix[START_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
self.transitions.data[tag_to_ix[PAD_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[PAD_TAG]] = -10000
self.hidden = self.init_hidden()
def init_hidden(self):
return (torch.randn(2, 1, self.hidden_dim // 2),
torch.randn(2, 1, self.hidden_dim // 2))
def forward(self, sentence):
embeds = self.word_embeds(sentence)
lstm_out, self.hidden = self.lstm(embeds.view(len(sentence), 1, -1), self.hidden)
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
tag_space = self.hidden2tag(lstm_out)
return tag_space
def _score_sentence(self, feats, tags):
score = torch.zeros(1)
tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
for i, feat in enumerate(feats):
score = score + self.transitions[tags[i], tags[i+1]] + feat[tags[i+1]]
score = score + self.transitions[tags[-1], self.tag_to_ix[STOP_TAG]]
return score
def _viterbi_decode(self, feats):
backpointers = []
init_vvars = torch.full((1, self.tagset_size), -10000.)
init_vvars[0][self.tag_to_ix[START_TAG]] = 0
forward_var = init_vvars
for feat in feats:
bptrs_t = []
viterbivars_t = []
for next_tag in range(self.tagset_size):
next_tag_var = forward_var + self.transitions[:, next_tag]
best_tag_id = argmax(next_tag_var)
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
backpointers.append(bptrs_t)
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0][best_tag_id]
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
start = best_path.pop()
assert start == self.tag_to_ix[START_TAG]
best_path.reverse()
return path_score, best_path
def neg_log_likelihood(self, sentence, tags):
feats = self.forward(sentence)
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
return forward_score - gold_score
def forward_decode(self, sentence):
feats = self.forward(sentence)
score, tag_seq = self._viterbi_decode(feats)
return score, tag_seq
```
在这个简单的代码实现中,我们定义了一个继承自 `nn.Module` 的类 `BiLSTM_CRF`,它包含一个双向LSTM层和一个CRF层。在初始化函数中,我们定义了各种超参数和模型参数。在 `forward` 函数中,我们首先对输入的句子进行词嵌入,然后将其输入到双向LSTM中,将输出传递到一个线性层中,最后得到一个标签空间。在 `neg_log_likelihood` 函数中,我们计算了负对数似然损失,该损失可以用来训练模型。在 `forward_decode` 函数中,我们使用 Viterbi 算法解码标签序列。
阅读全文