stm32晶振电路的作用

时间: 2023-10-30 07:22:57 浏览: 88
STM32晶振电路的作用是提供STM32芯片所需要的时钟信号。晶振电路由晶振和相关的电容器组成,晶振负责产生稳定的高频振荡信号,而电容器则起到滤波和稳压的作用,保证芯片能够正常工作。STM32芯片内部的各个模块都需要时钟信号来同步和控制其工作,在没有外部时钟输入时,晶振电路可以提供一个基准时钟信号来保证芯片正常工作。因此,晶振电路是STM32芯片中非常重要的一个外部电路。
相关问题

stm32晶振电路原理

STM32晶振电路主要包含晶振、负载电容和电阻三部分。晶振是产生高频信号的元件,一般为陶瓷晶振或石英晶振。负载电容用于调整晶振的频率,一般来说,负载电容应该为晶振额定负载电容的两倍。电阻用于限制晶振的启动电流,一般为33欧姆左右。 具体的电路原理如下: 晶振的两个引脚分别连接到STM32的两个晶振输入引脚(OSC_IN和OSC_OUT)。 两个负载电容分别连接到晶振的两个引脚,并且连接到STM32芯片的地线。 电阻连接在晶振输入引脚和地线之间。 需要注意的是,晶振电路的布线要求尽量短,以减少干扰。同时,晶振的选择应该根据具体的需求进行,例如选择陶瓷晶振还是石英晶振,以及选择合适的频率等。

stm32晶振电路设计

在STM32晶振电路设计中,有几个关键参数需要考虑。首先是晶振的频率(F)、晶振的Shunt Capacitance(C0)、晶振的负载电容Load Capacitance(CL)和晶振的等效串联电阻(ESR)。根据手册中的参数,可以计算出晶振的最小稳定跨导(gmcrit)。通常要求单片机的gm比晶振的gmcrit大5倍以上,以确保晶振能顺利起振并运行在稳定状态。\[2\] 对于外部无源晶振的匹配,需要考虑负载电容的匹配。在匹配过程中,可以选择合适的负载电容来满足时钟精度的要求。对于STM32F103和晶技HC-49SMD 8M 20pF 20ppm的匹配,可以根据需求选择合适的负载电容。\[3\] 需要注意的是,直接抄袭原理图可能会导致批量生产中出现问题,系统稳定性可能会受到影响。因此,在设计晶振电路时,建议进行匹配工作,以确保系统的稳定性和可靠性。 #### 引用[.reference_title] - *1* *2* *3* [STM32 外部晶振电路设计和匹配](https://blog.csdn.net/Seaman_TY/article/details/93090532)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

最新推荐

recommend-type

Scrapy-1.8.2.tar.gz

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

search-log.zip

搜索记录,包括时间、搜索关键词等,用于PySpark案例练习
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望