ob, true_rew, new, _ = env.step(ac)

时间: 2023-05-12 15:04:32 浏览: 76
这是一个关于强化学习的代码行,其中 env.step(ac) 是在环境中执行动作 ac 并返回一些信息,ob 表示环境的观测值,true_rew 表示真实的奖励值,new 表示是否到达了终止状态,_ 表示一些额外的信息。具体的实现需要看环境和动作的定义。
相关问题

Batch( obs={}, act={}, rew={}, terminated={}, truncated={}, done={}, obs_next={}, info={}, policy={} )对batch进行切片

对于 Batch 类型的对象,可以通过切片操作来获取其中的部分数据。例如,可以使用以下代码从 Batch 对象中获取前 10 个样本: ``` batch_size = len(Batch.obs) batch_slice = slice(0, 10) obs_slice = Batch.obs[batch_slice] act_slice = Batch.act[batch_slice] rew_slice = Batch.rew[batch_slice] terminated_slice = Batch.terminated[batch_slice] truncated_slice = Batch.truncated[batch_slice] done_slice = Batch.done[batch_slice] obs_next_slice = Batch.obs_next[batch_slice] info_slice = Batch.info[batch_slice] policy_slice = Batch.policy[batch_slice] ``` 其中,`batch_slice` 表示需要获取的样本范围,这里是 0 到 10,`obs_slice`、`act_slice`、`rew_slice` 等变量分别表示切片后得到的 observations、actions、rewards 等数据。

soft actor critic tensorflow1.x code

以下是一个使用TensorFlow 1.x实现Soft Actor-Critic(SAC)算法的代码示例: ```python import tensorflow as tf import numpy as np import gym # Hyperparameters gamma = 0.99 tau = 0.005 hidden_sizes = [256, 256] batch_size = 100 buffer_size = 10000 learning_rate = 0.0003 alpha = 0.2 target_entropy = -1.0 # Create the replay buffer class ReplayBuffer: def __init__(self, obs_dim, act_dim, size): self.obs_buf = np.zeros((size, obs_dim), dtype=np.float32) self.act_buf = np.zeros((size, act_dim), dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.next_obs_buf = np.zeros((size, obs_dim), dtype=np.float32) self.done_buf = np.zeros(size, dtype=np.float32) self.ptr, self.size, self.max_size = 0, 0, size def store(self, obs, act, rew, next_obs, done): self.obs_buf[self.ptr] = obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.next_obs_buf[self.ptr] = next_obs self.done_buf[self.ptr] = done self.ptr = (self.ptr+1) % self.max_size self.size = min(self.size+1, self.max_size) def sample_batch(self, batch_size=batch_size): idxs = np.random.randint(0, self.size, size=batch_size) return dict(obs=self.obs_buf[idxs], act=self.act_buf[idxs], rew=self.rew_buf[idxs], next_obs=self.next_obs_buf[idxs], done=self.done_buf[idxs]) # Create the actor and critic networks class MLP(tf.keras.Model): def __init__(self, sizes, activation=tf.nn.relu, output_activation=None): super(MLP, self).__init__() self.layers_ = [] for i, size in enumerate(sizes[:-1]): layer = tf.keras.layers.Dense(units=size, activation=activation) self.layers_.append(layer) self.layers_.append(tf.keras.layers.Dense(units=sizes[-1], activation=output_activation)) def call(self, inputs): x = inputs for layer in self.layers_: x = layer(x) return x class ActorCritic(tf.keras.Model): def __init__(self, obs_dim, act_dim, hidden_sizes, activation=tf.nn.relu, output_activation=None): super(ActorCritic, self).__init__() self.q1 = MLP(hidden_sizes + [1], activation, output_activation) self.q2 = MLP(hidden_sizes + [1], activation, output_activation) self.v = MLP(hidden_sizes + [1], activation, output_activation) self.pi = MLP(hidden_sizes + [act_dim], activation, tf.nn.tanh) def call(self, obs, act=None): q1 = self.q1(tf.concat([obs, act], axis=-1)) q2 = self.q2(tf.concat([obs, act], axis=-1)) v = self.v(obs) pi = self.pi(obs) return q1, q2, v, pi def act(self, obs): pi = self.pi(obs) return pi.numpy() # Create the SAC agent class SAC: def __init__(self, obs_dim, act_dim, hidden_sizes, buffer_size, batch_size, learning_rate, alpha, gamma, tau, target_entropy): self.q_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) self.v_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) self.pi_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) self.replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=buffer_size) self.batch_size = batch_size self.alpha = alpha self.gamma = gamma self.tau = tau self.target_entropy = target_entropy self.obs_dim = obs_dim self.act_dim = act_dim self.hidden_sizes = hidden_sizes self.actor_critic = ActorCritic(obs_dim, act_dim, hidden_sizes) def update(self, data): obs = data['obs'] act = data['act'] rew = data['rew'] next_obs = data['next_obs'] done = data['done'] with tf.GradientTape(persistent=True) as tape: q1, q2, v, pi = self.actor_critic(obs, act) _, _, _, next_pi = self.actor_critic(next_obs) v_target = self.target_v(next_obs, next_pi) q_target = rew + self.gamma * (1 - done) * v_target q1_loss = tf.reduce_mean(tf.square(q1 - q_target)) q2_loss = tf.reduce_mean(tf.square(q2 - q_target)) v_loss = tf.reduce_mean(tf.square(v - v_target)) pi_loss = tf.reduce_mean(self.alpha * pi.log_prob(act) - q1) alpha_loss = tf.reduce_mean(-self.alpha * (self.target_entropy - pi.entropy())) q1_grads = tape.gradient(q1_loss, self.actor_critic.q1.trainable_variables) self.q_optimizer.apply_gradients(zip(q1_grads, self.actor_critic.q1.trainable_variables)) q2_grads = tape.gradient(q2_loss, self.actor_critic.q2.trainable_variables) self.q_optimizer.apply_gradients(zip(q2_grads, self.actor_critic.q2.trainable_variables)) v_grads = tape.gradient(v_loss, self.actor_critic.v.trainable_variables) self.v_optimizer.apply_gradients(zip(v_grads, self.actor_critic.v.trainable_variables)) pi_grads = tape.gradient(pi_loss, self.actor_critic.pi.trainable_variables) self.pi_optimizer.apply_gradients(zip(pi_grads, self.actor_critic.pi.trainable_variables)) alpha_grads = tape.gradient(alpha_loss, [self.alpha]) self.alpha = tf.clip_by_value(self.alpha - learning_rate * alpha_grads[0], 0, 1) del tape def target_v(self, obs, pi): q1, q2, _, _ = self.actor_critic(obs, pi) q = tf.minimum(q1, q2) v_target = tf.reduce_mean(q - self.alpha * pi.entropy()) return v_target def train(self): data = self.replay_buffer.sample_batch(self.batch_size) self.update(data) def store(self, obs, act, rew, next_obs, done): self.replay_buffer.store(obs, act, rew, next_obs, done) def act(self, obs): return self.actor_critic.act(obs) def save(self, save_path): self.actor_critic.save_weights(save_path) def load(self, load_path): self.actor_critic.load_weights(load_path) # Train the SAC agent on the gym environment env = gym.make('Pendulum-v0') obs_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] sac = SAC(obs_dim, act_dim, hidden_sizes, buffer_size, batch_size, learning_rate, alpha, gamma, tau, target_entropy) for i in range(1000): obs = env.reset() total_reward = 0 done = False while not done: act = sac.act(obs.reshape(1, -1)) next_obs, rew, done, _ = env.step(act[0]) sac.store(obs, act, rew, next_obs, done) sac.train() obs = next_obs total_reward += rew print('Epoch: {}, Total Reward: {:.2f}'.format(i, total_reward)) sac.save('sac_model') ``` 请注意,这只是一个基本的实现示例,其中有许多可以进行改进和优化的方面。

相关推荐

最新推荐

安卓桌面应用EyeRoom.zip

android 源码学习. 资料部分来源于合法的互联网渠道收集和整理,供大家学习参考与交流。本人不对所涉及的版权问题或内容负法律责任。如有侵权,请通知本人删除。感谢CSDN官方提供大家交流的平台

仿随手记的炫酷饼图.zip

android 源码学习. 资料部分来源于合法的互联网渠道收集和整理,供大家学习参考与交流。本人不对所涉及的版权问题或内容负法律责任。如有侵权,请通知本人删除。感谢CSDN官方提供大家交流的平台

webview重载使用&自定义网址.zip

android 源码学习. 资料部分来源于合法的互联网渠道收集和整理,供大家学习参考与交流。本人不对所涉及的版权问题或内容负法律责任。如有侵权,请通知本人删除。感谢CSDN官方提供大家交流的平台

C语言学习工程和C语言项目.zip

C语言诞生于美国的贝尔实验室,由丹尼斯·里奇(Dennis MacAlistair Ritchie)以肯尼斯·蓝·汤普森(Kenneth Lane Thompson)设计的B语言为基础发展而来,在它的主体设计完成后,汤普森和里奇用它完全重写了UNIX,且随着UNIX的发展,c语言也得到了不断的完善。为了利于C语言的全面推广,许多专家学者和硬件厂商联合组成了C语言标准委员会,并在之后的1989年,诞生了第一个完备的C标准,简称“C89”,也就是“ANSI C”,截至2020年,最新的C语言标准为2018年6月发布的“C18”。 [5] C语言之所以命名为C,是因为C语言源自Ken Thompson发明的B语言,而B语言则源自BCPL语言。 1967年,剑桥大学的Martin Richards对CPL语言进行了简化,于是产生了BCPL(Basic Combined Programming Language)语言。

带暂停功能倒计时TimeCountDown盒子适用.zip

android 源码学习. 资料部分来源于合法的互联网渠道收集和整理,供大家学习参考与交流。本人不对所涉及的版权问题或内容负法律责任。如有侵权,请通知本人删除。感谢CSDN官方提供大家交流的平台

2023年中国辣条食品行业创新及消费需求洞察报告.pptx

随着时间的推移,中国辣条食品行业在2023年迎来了新的发展机遇和挑战。根据《2023年中国辣条食品行业创新及消费需求洞察报告》,辣条食品作为一种以面粉、豆类、薯类等原料为基础,添加辣椒、调味料等辅料制成的食品,在中国市场拥有着广阔的消费群体和市场潜力。 在行业概述部分,报告首先介绍了辣条食品的定义和分类,强调了辣条食品的多样性和口味特点,满足消费者不同的口味需求。随后,报告回顾了辣条食品行业的发展历程,指出其经历了从传统手工制作到现代化机械生产的转变,市场规模不断扩大,产品种类也不断增加。报告还指出,随着消费者对健康饮食的关注增加,辣条食品行业也开始向健康、营养的方向发展,倡导绿色、有机的生产方式。 在行业创新洞察部分,报告介绍了辣条食品行业的创新趋势和发展动向。报告指出,随着科技的不断进步,辣条食品行业在生产工艺、包装设计、营销方式等方面都出现了新的创新,提升了产品的品质和竞争力。同时,报告还分析了未来可能出现的新产品和新技术,为行业发展提供了新的思路和机遇。 消费需求洞察部分则重点关注了消费者对辣条食品的需求和偏好。报告通过调查和分析发现,消费者在选择辣条食品时更加注重健康、营养、口味的多样性,对产品的品质和安全性提出了更高的要求。因此,未来行业需要加强产品研发和品牌建设,提高产品的营养价值和口感体验,以满足消费者不断升级的需求。 在市场竞争格局部分,报告对行业内主要企业的市场地位、产品销量、市场份额等进行了分析比较。报告发现,中国辣条食品行业竞争激烈,主要企业之间存在着激烈的价格战和营销竞争,产品同质化严重。因此,企业需要加强品牌建设,提升产品品质,寻求差异化竞争的突破口。 最后,在行业发展趋势与展望部分,报告对未来辣条食品行业的发展趋势进行了展望和预测。报告认为,随着消费者对健康、有机食品的需求增加,辣条食品行业将进一步向健康、营养、绿色的方向发展,加强与农业合作,推动产业升级。同时,随着科技的不断进步,辣条食品行业还将迎来更多的创新和发展机遇,为行业的持续发展注入新的动力。 综上所述,《2023年中国辣条食品行业创新及消费需求洞察报告》全面深入地分析了中国辣条食品行业的发展现状、创新动向和消费需求,为行业的未来发展提供了重要的参考和借鉴。随着消费者消费观念的不断升级和科技的持续发展,中国辣条食品行业有望迎来更加广阔的发展空间,实现可持续发展和行业繁荣。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

学习率衰减策略及调参技巧:在CNN中的精准应用指南

# 1. 学习率衰减策略概述 学习率衰减是深度学习中常用的优化技巧,旨在调整模型训练时的学习率,以提高模型性能和收敛速度。在训练迭代过程中,通过逐步减小学习率的数值,模型在接近收敛时可以更精细地调整参数,避免在局部最优点处震荡。学习率衰减策略种类繁多,包括固定衰减率、指数衰减、阶梯衰减和余弦衰减等,每种方法都有适用的场景和优势。掌握不同学习率衰减策略,可以帮助深度学习从业者更好地训练和调优模型。 # 2. 深入理解学习率衰减 学习率衰减在深度学习中扮演着重要的角色,能够帮助模型更快地收敛,并提高训练效率和泛化能力。在本章节中,我们将深入理解学习率衰减的基本概念、原理以及常见方法。 ##

如何让restTemplate call到一个mock的数据

要使用 `RestTemplate` 调用一个模拟的数据,你可以使用 `MockRestServiceServer` 类来模拟服务端的响应。下面是一个示例代码: ```java import org.springframework.http.HttpMethod; import org.springframework.http.HttpStatus; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.test

2023年半导体行业20强品牌.pptx

2023年半导体行业20强品牌汇报人文小库于2024年1月10日提交了《2023年半导体行业20强品牌》的报告,报告内容主要包括品牌概述、产品线分析、技术创新、市场趋势和品牌策略。根据报告显示的数据和分析,可以看出各品牌在半导体行业中的综合实力和发展情况。 在品牌概述部分,文小库对2023年半导体行业20强品牌进行了排名,主要根据市场份额、技术创新能力和品牌知名度等多个指标进行评估。通过综合评估,得出了各品牌在半导体行业中的排名,并分析了各品牌的市场份额变化情况,了解了各品牌在市场中的竞争态势和发展趋势。此外,还对各品牌的品牌影响力进行了分析,包括对行业发展的推动作用和对消费者的影响力等方面进行评估,从品牌知名度和品牌价值两个维度来评判各品牌的实力。 在产品线分析部分,报告详细描述了微处理器在半导体行业中的核心地位,这是主要应用于计算机、手机、平板等智能终端设备中的关键产品。通过对产品线进行详细分析,可以了解各品牌在半导体领域中的产品布局和市场表现,为后续的市场策略制定提供了重要的参考信息。 在技术创新方面,报告也对各品牌在技术创新方面的表现进行了评估,这是半导体行业发展的关键驱动力之一。通过分析各品牌在技术研发、产品设计和生产制造等方面的创新能力,可以评判各品牌在未来发展中的竞争优势和潜力,为品牌策略的制定提供重要依据。 在市场趋势和品牌策略方面,报告分析了半导体行业的发展趋势和竞争格局,为各品牌制定市场策略和品牌推广提供了重要参考。针对未来市场发展的趋势,各品牌需要不断加强技术创新、提升品牌影响力,以及制定有效的市场推广策略,来保持在行业中的竞争优势。 综上所述,在2023年半导体行业20强品牌报告中,通过对各品牌的综合排名、产品线分析、技术创新、市场趋势和品牌策略等方面的评估和分析,展现了各品牌在半导体行业中的实力和发展状态,为半导体行业的未来发展提供了重要的参考和指导。