基于LSTM的股票预测系统
时间: 2024-01-16 09:17:59 浏览: 123
利用LSTM原理预测股市
3星 · 编辑精心推荐
基于LSTM的股票预测系统是一种利用长短期记忆网络(LSTM)来预测股票价格走势的系统。LSTM是一种循环神经网络(RNN)的变体,它能够有效地处理时间序列数据,并且在处理长期依赖关系时表现出色。
下面是一个基于LSTM的股票预测系统的示例代码:
```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense
# 读取股票数据
data = pd.read_csv('stock_data.csv')
# 数据预处理
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
# 划分训练集和测试集
train_size = int(len(scaled_data) * 0.8)
train_data = scaled_data[:train_size, :]
test_data = scaled_data[train_size:, :]
# 创建训练集和测试集
def create_dataset(dataset, time_step=1):
X, Y = [], []
for i in range(len(dataset) - time_step - 1):
a = dataset[i:(i + time_step), 0]
X.append(a)
Y.append(dataset[i + time_step, 0])
return np.array(X), np.array(Y)
time_step = 100
X_train, Y_train = create_dataset(train_data, time_step)
X_test, Y_test = create_dataset(test_data, time_step)
# 转换为LSTM所需的输入格式 [样本数,时间步长,特征数]
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# 构建LSTM模型
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(time_step, 1)))
model.add(LSTM(units=50))
model.add(Dense(units=1))
model.compile(optimizer='adam', loss='mean_squared_error')
# 训练模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
# 预测股票价格
train_predict = model.predict(X_train)
test_predict = model.predict(X_test)
# 反归一化
train_predict = scaler.inverse_transform(train_predict)
Y_train = scaler.inverse_transform([Y_train])
test_predict = scaler.inverse_transform(test_predict)
Y_test = scaler.inverse_transform([Y_test])
# 计算均方根误差(RMSE)
train_rmse = np.sqrt(np.mean(np.power(Y_train - train_predict, 2)))
test_rmse = np.sqrt(np.mean(np.power(Y_test - test_predict, 2)))
# 可视化结果
import matplotlib.pyplot as plt
plt.plot(data['Close'].values, label='Actual')
plt.plot(np.concatenate([train_predict, test_predict]), label='Predicted')
plt.legend()
plt.show()
```
这个示例代码使用了Keras库来构建LSTM模型,并使用股票数据进行训练和预测。首先,将股票数据进行归一化处理,然后将数据划分为训练集和测试集。接下来,创建一个函数来生成LSTM模型所需的输入数据格式。然后,构建LSTM模型并进行训练。最后,使用训练好的模型进行预测,并将预测结果反归一化。最后,计算均方根误差(RMSE)并可视化预测结果。
阅读全文