无法识别的字段名称 "Chans"。 出错 train_EEGNet2 (第 5 行) convLayer2 = convolution2dLayer([EEGNet_Params.Chans EEGNet_Params.F2], EEGNet_Params.F2, 'padding', 'same');帮我修改正确
时间: 2024-02-21 12:01:44 浏览: 157
根据错误提示,无法识别的字段名称 "Chans",可能是因为你没有定义或者传递了正确的参数。请确保在调用 `train_EEGNet2` 函数时已经定义了 `EEGNet_Params.Chans` 参数。
你可以尝试在调用 `convolution2dLayer` 函数时,直接传递 `Chans` 参数的值,例如:
```
convLayer2 = convolution2dLayer([num_channels, EEGNet_Params.F2], EEGNet_Params.F2, 'padding', 'same');
```
其中,`num_channels` 是你需要定义或传递的通道数。如果你已经定义了 `EEGNet_Params.Chans` 参数,可以直接使用该参数:
```
convLayer2 = convolution2dLayer([EEGNet_Params.Chans, EEGNet_Params.F2], EEGNet_Params.F2, 'padding', 'same');
```
这样做应该可以解决你遇到的问题。
相关问题
帮我修改正确。错误使用 trainNetwork 无效网络。 出错 train_EEGNet (第 45 行) net = trainNetwork(X_train, categorical(Y_train), layers, options); 出错 question3 (第 35 行) net = train_EEGNet(X_train, Y_train, Fs, T, EEGNet_Params); 原因: 层 'ConvLayer1': Invalid input data. The number of channels of the input data (1) must match the layer's expected number of channels (16).
如果你的数据集通道数为1,那么你可以通过在输入数据之前添加一个升维层来解决这个问题。修改后的代码可能如下所示:
```matlab
function net = train_EEGNet(X_train, Y_train, Fs, T, EEGNet_Params)
% Define EEGNet architecture
inputLayer = imageInputLayer([size(X_train,1) size(X_train,2) 1]);
upsampleLayer = convolution2dLayer([1 1], 16, 'padding', 'same'); % 新增升维层
convLayer1 = convolution2dLayer([1 EEGNet_Params.F1], EEGNet_Params.F1, 'padding', 'same');
convLayer2 = convolution2dLayer([EEGNet_Params.Chans EEGNet_Params.F2], EEGNet_Params.F2, 'padding', 'same');
depthLayer = depthConcatenationLayer(2);
poolLayer = maxPooling2dLayer([1 EEGNet_Params.P], 'stride', [1 EEGNet_Params.Q]);
dropoutLayer = dropoutLayer(EEGNet_Params.DropProb);
flattenLayer = flattenLayer();
denseLayer = fullyConnectedLayer(2, 'name', 'fc');
softmaxLayer = softmaxLayer();
classificationLayer = classificationLayer();
layers = [
inputLayer
upsampleLayer
convLayer1
convLayer2
depthLayer
poolLayer
dropoutLayer
flattenLayer
denseLayer
softmaxLayer
classificationLayer];
% Set training options
options = trainingOptions('adam', ...
'InitialLearnRate', EEGNet_Params.LR, ...
'MaxEpochs', EEGNet_Params.NumEpochs, ...
'MiniBatchSize', EEGNet_Params.MiniBatchSize, ...
'Shuffle', 'every-epoch', ...
'Plots', 'training-progress', ...
'Verbose', false);
% Train network
net = trainNetwork(X_train, categorical(Y_train), layers, options);
end
```
这里我们新增了一个升维层,它的输入通道数为1,输出通道数为16,用于将输入数据的通道数转换为网络期望的通道数。
# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x
这里给出了一个 PyTorch 实现的 U-Net 模型,并且对代码进行了重构:
1. 将 ConvBlock 提取到了 utils.py 中,以便在 U-Net 中复用。
2. 在 U-Net 模型的 forward 方法中,使用了 ModuleList 对 down-sampling 和 up-sampling 层进行了封装,使得代码更加简洁和易于扩展。
3. 使用了 nn.functional.interpolate 对 feature map 进行了上采样,避免了使用 nn.ConvTranspose2d 带来的一些问题。
4. 在最后的卷积层中,使用了 nn.Sequential 对多个卷积层进行了封装,使得代码更加简洁。
这些重构都是为了提高代码的可读性、可维护性和可扩展性,使得代码更加清晰,易于理解和修改。
阅读全文