数据data中Y为无序四分类,怎样用TPR、FPR绘制ROC曲线?请输出R代码。
时间: 2023-06-03 11:04:15 浏览: 178
分类常用的ROC曲线附matlab代码
下面是可以用于绘制ROC曲线的R代码:
```R
# 利用预测分数和真实标签计算TPR和FPR
calculate_TPR_FPR <- function(predicted_scores, true_labels, threshold) {
predicted_labels <- ifelse(predicted_scores >= threshold, 1, 0)
TP <- sum(predicted_labels == 1 & true_labels == 1)
FN <- sum(predicted_labels == 0 & true_labels == 1)
FP <- sum(predicted_labels == 1 & true_labels == 0)
TN <- sum(predicted_labels == 0 & true_labels == 0)
tpr <- TP / (TP + FN)
fpr <- FP / (FP + TN)
return(c(tpr, fpr))
}
# 绘制ROC曲线
plot_ROC_curve <- function(scores, labels) {
# 将标签转换为二进制矩阵
label_matrix <- matrix(0, nrow = length(labels), ncol = 4)
for (i in 1:length(labels)) {
label_matrix[i, labels[i]] <- 1
}
# 计算每个类别下的TPR和FPR
ROC_data <- list()
for (i in 1:4) {
# 提取预测分数和标签
scores_i <- scores[, i]
labels_i <- label_matrix[, i]
# 计算TPR和FPR
ROC_i <- data.frame(threshold = numeric(0), tpr = numeric(0), fpr = numeric(0))
for (threshold in seq(from = 0, to = 1, by = 0.01)) {
tpr_fpr <- calculate_TPR_FPR(predicted_scores = scores_i, true_labels = labels_i, threshold = threshold)
ROC_i <- rbind(ROC_i, data.frame(threshold = threshold, tpr = tpr_fpr[1], fpr = tpr_fpr[2]))
}
# 将结果存储到列表中
ROC_data[[i]] <- ROC_i
}
# 绘制ROC曲线
plot(x = 0, y = 0, xlim = c(0, 1), ylim = c(0, 1),
xlab = "False Positive Rate", ylab = "True Positive Rate",
main = "ROC Curve")
legend(x = "bottomright", inset = 0.05,
legend = c("Class 0", "Class 1", "Class 2", "Class 3"),
col = 1:4, lty = 1, cex = 0.8)
for (i in 1:4) {
ROC_i <- ROC_data[[i]]
lines(x = ROC_i$fpr, y = ROC_i$tpr, col = i)
}
}
# 示例数据
set.seed(123)
data <- data.frame(X1 = rnorm(100), X2 = rnorm(100), Y = sample(c(0, 1, 2, 3), 100, replace = TRUE))
# 示例用法
scores <- matrix(runif(400), nrow = 100, ncol = 4)
plot_ROC_curve(scores = scores, labels = data$Y)
```
阅读全文