c++std::thread
时间: 2024-12-30 09:23:33 浏览: 5
### C++ 中 `std::thread` 的使用方法
#### 创建线程
为了创建一个新的线程,可以实例化一个 `std::thread` 对象并传递给其构造函数想要在线程中运行的任务。这个任务通常是一个函数或 lambda 表达式。
```cpp
#include <iostream>
#include <thread>
void backgroundTask() {
std::cout << "Running on a separate thread." << std::endl;
}
int main() {
std::thread t(backgroundTask);
}
```
当不再需要线程时,应该调用 `join()` 或者 `detach()` 方法来释放资源[^1]。
#### 加入线程 (`join`)
通过调用 `join()` 可以等待线程完成工作后再继续执行后续代码:
```cpp
t.join();
// 主线程在此处暂停直到子线程结束
```
#### 分离线程 (`detach`)
分离线程意味着让新启动的线程独立于主线程之外运行,而不需要显式的同步机制:
```cpp
t.detach();
// 子线程将继续异步执行直至完成自己的生命周期
```
#### 获取线程ID
可以通过 `get_id()` 函数获得当前线程的身份标识符:
```cpp
auto id = t.get_id();
std::cout << "Thread ID is " << id << std::endl;
```
#### 检测是否可加入
要判断某个线程对象关联的实际操作系统级别的线程是否存在且未被回收,则可以用 `joinable()` 成员函数来进行测试:
```cpp
if (t.joinable()) {
// 如果该条件成立则表示存在有效的工作线程可供连接
}
```
#### Lambda表达式作为参数传入
也可以利用lambda表达式向线程传递额外的数据,在下面的例子中展示了如何捕获局部变量以及外部作用域内的数据结构:
```cpp
#include <iostream>
#include <string>
#include <thread>
int main(){
int local_state=0;
auto func=[&local_state]() mutable -> void{
++local_state;
std::cout<<"Local state:"<<local_state<<'\n';
};
std::thread(func).join();
}
```
#### 处理返回值
对于那些有返回值得情况,我们可以借助 `std::promise`, `std::future` 和 `std::packaged_task` 来实现跨线程间的安全通信与协调:
```cpp
#include <iostream>
#include <memory>
#include <future>
#include <utility>
#include <functional>
using namespace std;
double divide(double a,double b){
if(b==0) throw runtime_error("Division by zero!");
return a/b;
}
int main(){
packaged_task<double(double,double)> task(divide);
future<double> result=task.get_future();
thread td(move(task),2.0,4.0);
try{
cout<<result.get()<<endl;//阻塞在这里直到得到结果
}
catch(exception const&e){
cerr<<e.what()<<endl;
}
td.join();
}
```
阅读全文