def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
时间: 2024-02-26 13:53:38 浏览: 185
这段代码是一个类的初始化方法,用于创建一个多头自注意力机制(multi-head self-attention)的模型。其中,dim表示输入特征的维度,window_size表示窗口大小,num_heads表示注意力头的数量。qkv_bias、qk_scale、attn_drop和proj_drop则是一些可选的超参数。具体来说,该初始化方法定义了一个相对位置偏差参数表,其大小为(2 * Wh - 1) * (2 * Ww - 1) * nH,其中Wh和Ww分别表示窗口的高度和宽度,nH表示注意力头的数量。
阅读全文