对于二值化图像的不连续的像素点,已知各个像素点的坐标,怎么让各个像素点之间连线起来,python代码
时间: 2024-04-30 15:17:45 浏览: 156
可以使用OpenCV库来实现二值图像的连通性分析,然后根据连通域概念即可完成像素点的连接。以下是一个简单的实现示例:
```
import cv2
import numpy as np
# 读取二值化图像
img = cv2.imread('binary_image.png', 0)
# 连通性分析
connectivity = 8
output = cv2.connectedComponentsWithStats(img, connectivity, cv2.CV_32S)
# 获取连通域信息
labels = output[1]
stats = output[2]
# 将连通域中心点之间的连线画出
img_connectivity = np.zeros_like(img)
for i, stat in enumerate(stats):
cx, cy = stat[0] + int(stat[2] / 2), stat[1] + int(stat[3] / 2)
for j in range(i + 1, len(stats)):
cx_, cy_ = stats[j][0] + int(stats[j][2] / 2), stats[j][1] + int(stats[j][3] / 2)
cv2.line(img_connectivity, (cx, cy), (cx_, cy_), 255, 1)
# 显示结果
cv2.imshow('result', img_connectivity)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在代码中,先使用cv2.connectedComponentsWithStats()函数对二值化图像进行了连通性分析,得到每个连通域的位置信息。然后,根据每个连通域的中心点位置,用cv2.line()函数将中心点之间的连线画出,得到图像的连通性信息。
阅读全文
相关推荐













