我想在swin-transformer中添加se注意力模块 请给出代码
时间: 2024-03-19 21:44:34 浏览: 167
好的,为了在Swin Transformer中添加SE注意力模块,您需要进行以下步骤:
1. 首先,在您的代码中导入SE注意力模块所需要的依赖项:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 接着定义SE注意力模块的代码如下:
```
class SEAttention(nn.Module):
def __init__(self, in_channels, ratio=16):
super(SEAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // ratio),
nn.ReLU(inplace=True),
nn.Linear(in_channels // ratio, in_channels),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
```
3. 最后,在Swin Transformer中添加SE注意力模块的代码如下:
```
class SwinTransformerBlock(nn.Module):
def __init__(self, embed_dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, se_ratio=0.):
super().__init__()
self.norm1 = norm_layer(embed_dim)
self.attn = Attention(
embed_dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(embed_dim)
mlp_hidden_dim = int(embed_dim * mlp_ratio)
self.mlp = Mlp(in_features=embed_dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if se_ratio > 0.:
self.se = SEAttention(embed_dim, int(embed_dim * se_ratio))
else:
self.se = nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
x = self.se(x)
return x
```
在这个代码中,我们在Swin Transformer Block中添加了一个SEAttention模块,并通过参数`se_ratio`控制SE注意力模块的比例。如果您想要使用SE注意力模块,请将`se_ratio`设置为一个大于0的值,否则将其设置为0即可。
希望这能帮助到您!
阅读全文