粒子群算法路径规划gazebo代码
时间: 2023-09-15 12:17:51 浏览: 104
一个用粒子群做的路径规划
粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,常用于路径规划问题。在Gazebo中,可以使用ROS(Robot Operating System)来实现路径规划。
以下是一个使用PSO算法实现路径规划的Gazebo示例代码:
```python
#!/usr/bin/env python
import rospy
import numpy as np
import random
import math
from geometry_msgs.msg import Twist
from nav_msgs.msg import Odometry
class Particle:
def __init__(self):
self.position = np.array([random.uniform(-5, 5), random.uniform(-5, 5)])
self.velocity = np.array([random.uniform(-1, 1), random.uniform(-1, 1)])
self.best_position = self.position
self.best_fitness = float('inf')
def update_velocity(self, global_best_position, w, c1, c2):
r1 = np.random.rand()
r2 = np.random.rand()
cognitive = c1 * r1 * (self.best_position - self.position)
social = c2 * r2 * (global_best_position - self.position)
self.velocity = w * self.velocity + cognitive + social
def update_position(self):
self.position = self.position + self.velocity
def evaluate_fitness(self, goal):
error = math.sqrt((self.position[0] - goal[0])**2 + (self.position[1] - goal[1])**2)
fitness = error
if fitness < self.best_fitness:
self.best_fitness = fitness
self.best_position = self.position
return fitness
class PSO:
def __init__(self):
self.goal = np.array([5, 5])
self.particles = [Particle() for _ in range(10)]
self.global_best_position = np.array([random.uniform(-5, 5), random.uniform(-5, 5)])
self.global_best_fitness = float('inf')
self.vel_msg = Twist()
self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=10)
self.odom_sub = rospy.Subscriber('odom', Odometry, self.get_odom)
def get_odom(self, odom):
x = odom.pose.pose.position.x
y = odom.pose.pose.position.y
position = np.array([x, y])
fitness = self.evaluate_global_best(position)
self.update_particles(fitness)
self.update_velocity()
def evaluate_global_best(self, position):
fitness = math.sqrt((position[0] - self.goal[0])**2 + (position[1] - self.goal[1])**2)
if fitness < self.global_best_fitness:
self.global_best_fitness = fitness
self.global_best_position = position
return fitness
def update_particles(self, fitness):
for particle in self.particles:
particle.evaluate_fitness(self.goal)
if particle.best_fitness < fitness:
fitness = particle.best_fitness
self.global_best_position = particle.best_position
def update_velocity(self):
w = 0.5
c1 = 0.5
c2 = 0.5
for particle in self.particles:
particle.update_velocity(self.global_best_position, w, c1, c2)
particle.update_position()
self.move()
def move(self):
self.vel_msg.linear.x = 0.5
self.vel_msg.angular.z = 0.0
self.cmd_vel_pub.publish(self.vel_msg)
if __name__ == '__main__':
rospy.init_node('pso_path_planning')
pso = PSO()
rospy.spin()
```
在这个示例代码中,我们定义了一个粒子类(Particle)和一个PSO类(PSO)。每个粒子都有一个位置(position)和速度(velocity),并维护着自己的最佳位置(best_position)和适应度(best_fitness)。在PSO类中,我们创建了一组粒子,并维护了全局最佳位置(global_best_position)和适应度(global_best_fitness)。在ROS节点初始化后,我们在回调函数中获取机器人当前位置,并使用PSO算法更新粒子的位置和速度。最后,我们发布机器人运动的速度控制命令。
请注意,这只是一个示例代码,您需要根据您的具体情况进行修改和调整。
阅读全文