复杂一点的VAE模型,pytorch版本
时间: 2024-09-06 17:05:06 浏览: 34
vq-vae-2-pytorch-master
在PyTorch中,复杂的Variational Autoencoder (VAE)模型通常会包含一些高级特性,比如深度结构(如多层感知机)、条件生成、或者结合其他技术(如自注意力机制)。例如,我们可以构建一个深度条件VAE (Conditional Variational Autoencoder,CVAE),它接受额外的条件输入,并能根据这些条件生成特定样式的样本。
以下是一个简单的CVAE模型示例:
```python
import torch
from torch import nn
class CVAE(nn.Module):
def __init__(self, input_dim, hidden_dim, z_dim, num_layers=2):
super(CVAE, self).__init__()
self.encoder = nn.Sequential(
# 输入层到隐藏层
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
# 隐藏层到中间层
*([nn.Linear(hidden_dim, hidden_dim)] * num_layers),
nn.ReLU(),
# 中间层到z分布参数(均值和方差)
nn.Linear(hidden_dim, z_dim * 2)
)
self.decoder = nn.Sequential(
# z向量到隐藏层
nn.Linear(z_dim, hidden_dim),
nn.ReLU(),
# 隐藏层到输出层
*([nn.Linear(hidden_dim, hidden_dim)] * num_layers),
nn.ReLU(),
# 输出层,注意这里需要调整形状与输入匹配
nn.Linear(hidden_dim, input_dim)
)
def encode(self, x):
mean, log_var = self.encoder(x).chunk(2, dim=-1)
return mean, log_var
def reparameterize(self, mean, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return mean + eps * std
def decode(self, z):
return self.decoder(z)
def forward(self, x, cond_input=None):
if cond_input is not None:
x = torch.cat((x, cond_input), dim=1)
mean, log_var = self.encode(x)
z = self.reparameterize(mean, log_var)
reconstructed_x = self.decode(z)
return reconstructed_x, mean, log_var
```
阅读全文