用python 编写一个能计算预测地下水位的小程序
时间: 2024-10-29 09:17:32 浏览: 22
在Python中编写一个简单的地下水位预测小程序,我们可以利用机器学习中的线性回归模型作为基础示例。这里我们假设你有一个历史数据集,其中包含了影响地下水位的因素(如降雨量、气温等)和对应的地下水位观测值。
```python
# 导入所需库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 假设data.csv是你的数据文件
def load_data(file_path):
data = pd.read_csv(file_path)
return data
def preprocess_data(data):
# 数据预处理步骤,如缺失值填充、特征工程等
X = data[['rainfall', 'temperature']] # 假设这两个是影响因素
y = data['groundwater_level']
return X, y
def split_data(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
return X_train, X_test, y_train, y_test
def train_model(X_train, y_train):
model = LinearRegression()
model.fit(X_train, y_train)
return model
def predict(model, X_test):
groundwater_levels_pred = model.predict(X_test)
return groundwater_levels_pred
def main():
data = load_data('data.csv')
X, y = preprocess_data(data)
X_train, X_test, y_train, y_test = split_data(X, y)
model = train_model(X_train, y_train)
predictions = predict(model, X_test)
print("预测的地下水位:", predictions)
if __name__ == "__main__":
main()
阅读全文