YOLOv8关键点检测
时间: 2024-04-12 12:26:13 浏览: 323
基于OpenCV部署yolov8的人脸检测+关键点检测源码(python和c++版本,可换成车牌检测4个角点).zip
5星 · 资源好评率100%
YOLOv8是一种用于目标检测的深度学习模型,它是YOLO(You Only Look Once)系列模型的最新版本。YOLOv8采用了一种单阶段的检测方法,可以实现实时的目标检测。
关键点检测是指在目标检测的基础上,进一步检测目标的关键点位置。YOLOv8可以用于关键点检测任务,通过在网络结构中添加额外的分支来预测目标的关键点位置。
YOLOv8的关键点检测主要包括以下几个步骤:
1. 数据准备:收集并标注包含目标关键点的训练数据集。
2. 网络结构设计:根据任务需求,在YOLOv8的基础上添加适当的分支网络来预测目标的关键点位置。
3. 模型训练:使用标注好的数据集对网络进行训练,通过优化损失函数来提高关键点检测的准确性。
4. 模型推理:使用训练好的模型对新的图像进行推理,得到目标的关键点位置。
阅读全文