用matlab实现三种不同的 DFT 程序计算x(n)=R8(n)的傅立叶变换X(k),并比较三种程序计算机的运行时间。
时间: 2024-10-12 16:14:01 浏览: 199
在MATLAB中,有多种内置函数以及自定义函数可以用来计算离散傅立叶变换(DFT)。以下是三种常见的方式:
1. **fft() 函数**:
```matlab
x = rectpulse(8,0); % 创建一个长度为8的单位阶跃序列
X = fft(x); % 使用fft函数直接计算DFT
```
2. **ifftshift() 和 fft() 结合**:
```matlab
x = rectpulse(8,0);
X未经shift = fft(x);
X = ifftshift(X); % 移动零点(DC)到中心位置
```
3. **自定义循环实现(Decimation-in-Time,DIT)**:
```matlab
N = length(x);
X = zeros(size(x));
for k = 0:N-1
X(k+1) = sum(x.*exp(-j*2*pi*k/N)); % 点乘加和
end
```
要比较这三种方法的运行时间,你可以使用MATLAB的`tic`和`toc`函数或者`timeit`命令:
```matlab
% 记录开始时间
tic
% 计算方法一(fft)
method1_time = toc;
% 重复其他两种方法并记录时间...
% 输出总时间
disp(['Method 1 time: ', num2str(method1_time), ' seconds'])
```
执行这些代码后,你会看到每种方法的运行时间。通常来说,`fft()`函数因为底层优化是最快的,而自定义循环可能会较慢,尤其是对于大型数据集。
阅读全文
相关推荐


















