matlab激光雷达与鱼眼相机标定

时间: 2023-11-03 13:00:49 浏览: 285
激光雷达与鱼眼相机的标定可以使用MATLAB中的相机标定工具箱进行。首先,您需要收集一组包含激光雷达和鱼眼相机图像的数据。然后,使用MATLAB的相机标定工具箱来标定鱼眼相机的内参和激光雷达与相机之间的外参。在标定过程中,您需要提供相机的内参和失真系数以及激光雷达的坐标系与相机的坐标系之间的变换关系。通过最小化重投影误差,相机标定工具箱可以估计出最佳的内参和外参参数值。完成标定后,您就可以使用这些参数进行激光雷达和鱼眼相机之间的几何关系转换。
相关问题

matlab激光雷达标定

matlab激光雷达标定是通过联合标定的方法来实现的。联合标定是一种多传感器融合的基础工作,可以帮助我们获取激光雷达和相机之间的外参关系。联合标定的过程可以分为以下几个步骤: 1. 数据采集:首先需要采集包含激光雷达和相机数据的标定板图像。这些图像应该涵盖不同的角度和距离,并且在整个采集过程中,激光雷达和相机应该保持静止。 2. 提取特征点:对采集的标定板图像进行特征点提取,可以使用常见的特征点提取算法,如SIFT、SURF等。 3. 匹配特征点:将对应的特征点进行匹配,可以使用RANSAC等算法来去除错误匹配点。 4. 求解外参:使用求解PnP问题的方法,通过已知相机内参和对应的特征点坐标,求解出激光雷达和相机之间的外参关系。 5. 评估标定结果:对标定结果进行评估,可以使用重投影误差等指标来评估标定的准确性。 在Matlab中,可以使用相应的工具箱来实现激光雷达的标定。例如,MATLAB & Simulink中的Lidar-Camera Calibration工具箱可以用于激光雷达和相机的联合标定。

matlab激光雷达标定程序

根据提供的引用内容,MATLAB已经可以实现由图像和点云直接输出外参的整个过程,因此可以使用MATLAB自带的相机标定工具箱进行激光雷达标定。具体步骤如下: 1. 准备标定板:在标定板上贴上黑白相间的棋盘格,并确保标定板在相机和激光雷达的视野范围内。 2. 采集数据:使用激光雷达和相机采集标定板的数据,确保激光雷达和相机的频率一致。 3. 导入数据:将采集到的数据导入MATLAB中。 4. 运行相机标定工具箱:在MATLAB命令窗口中输入“cameraCalibrator”并回车,打开相机标定工具箱。 5. 添加图像:在相机标定工具箱中,点击“Add Image”按钮,选择采集到的标定板图像,并设置标定板的大小。 6. 添加点云:在相机标定工具箱中,点击“Add Depth Image”按钮,选择采集到的标定板点云数据,并设置标定板的大小。 7. 进行标定:在相机标定工具箱中,点击“Calibrate”按钮,等待标定完成。 8. 输出结果:标定完成后,可以在相机标定工具箱中查看标定结果,并将标定结果保存为MATLAB文件或者其他格式的文件。 ```matlab % MATLAB激光雷达标定程序示例 % 1. 准备标定板 % 2. 采集数据 % 3. 导入数据 % 4. 运行相机标定工具箱 % 5. 添加图像 % 6. 添加点云 % 7. 进行标定 % 8. 输出结果 % --相关问题--:
阅读全文

相关推荐

zip
matlab 相机标定代码 摄像机标定(Camera calibration)简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵的过程。 [1]基本的坐标系: 世界坐标系; 相机坐标系; 成像平面坐标系; 像素坐标系 [2]一般来说,标定的过程分为两个部分: 第一步是从世界坐标系转为相机坐标系,这一步是三维点到三维点的转换,包括R,t(相机外参,确定了相机在某个三维空间中的位置和朝向)等参数; 第二部是从相机坐标系转为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参,是对相机物理特性的近似)等参数; 投影矩阵 : P=K [ R | t ] 是一个3×4矩阵,混合了内参和外参而成。 P=K[Rt] 二.基本知识介绍及 1、摄像机模型 Pinhole Camera模型如下图所示: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 是一个小孔成像的模型,其中: [1]O点表示camera centre,即相机的中心点,也是相机坐标系的中心点; [2]z轴表示principal axis,即相机的主轴; [3]q点所在的平面表示image plane,即相机的像平面,也就是图片坐标系所在的二维平面; [4]O1点表示principal point,即主点,主轴与像平面相交的点; [5]O点到O1点的距离,也就是右边图中的f,即相机的焦距; [6]像平面上的x和y坐标轴是与相机坐标系上的X和Y坐标轴互相平行的; [7]相机坐标系是以X,Y,Z(大写)三个轴组成的且原点在O点,度量值为米(m); [8]像平面坐标系是以x,y(小写)两个轴组成的且原点在O1点,度量值为米(m); [9]像素坐标系一般指图片相对坐标系,在这里可以认为和像平面坐标系在一个平面上,不过原点是在图片的角上,而且度量值为像素的个数(pixel); 2、相机坐标系→成像平面坐标系 [1]以O点为原点建立摄像机坐标系。点Q(X,Y,Z)为摄像机坐标系空间中的一点,该点被光线投影到图像平面上的q(x,y,f)点。 图像平面与光轴z轴垂直,和投影中心距离为f (f是相机的焦距)。按照三角比例关系可以得出: x/f = X/Z y/f = Y/Z ,即 x = fX/Z y = fY/Z 以图像平面的左上角或左下角为原点建立坐标系。假设像平面坐标系原点位于图像左下角,水平向右为u轴,垂直向上为v轴,均以像素为单位。 以图像平面与光轴的交点O1 为原点建立坐标系,水平向右为x轴,垂直向上为y轴。原点O1一般位于图像中心处,O1在以像素为单位的图像坐标系中的坐标为(u0, v0)。 像平面坐标系和像素坐标系虽然在同一个平面上,但是原点并不是同一个。 摄像机模型与标定 - 小企鹅 - 企鹅的博客 设每个像素的物理尺寸大小为 dx * dy (mm) ( 由于单个像素点投影在图像平面上是矩形而不是正方形,因此可能dx != dy), 图像平面上某点在成像平面坐标系中的坐标为(x, y),在像素坐标系中的坐标为(u, v),则二者满足如下关系:[即(x, y)→(u, v)] u = x / dx + u0 v = y / dy + v0 用齐次坐标与矩阵形式表示为: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将等式两边都乘以点Q(X,Y,Z)坐标中的Z可得: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将摄像机坐标系中的(1)式代入上式可得: 则右边第一个矩阵和第二个矩阵的乘积亦为摄像机的内参数矩阵(单位为像素),相乘后可得: (2) 和(1)式相比,此内参数矩阵中f/dx, f/dy, cx/dx+u0, cy/dy+v0 的单位均为像素。令内参数矩阵为K,则上式可写成: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 (3) 三.相机内参K(与棋盘所在空间的3D几何相关) 在计算机视觉中,摄像机内参数矩阵 其中 f 为摄像机的焦距,单位一般是mm;dx,dy 为像元尺寸;u0,v0 为图像中心。 fx = f/dx, fy = f/dy,分别称为x轴和y轴上的归一化焦距. 为更好的理解,举个实例: 现以NiKon D700相机为例进行求解其内参数矩阵: 就算大家身边没有这款相机也无所谓,可以在网上百度一下,很方便的就知道其一些参数—— 焦距 f = 35mm 最高分辨率:4256×2832 传感器尺寸:36.0×23.9 mm 根据以上定义可以有: u0= 4256/2 = 2128 v0= 2832/2 = 1416 dx = 36.0/4256 dy = 23.9/2832 fx = f/dx = 4137.8 fy = f/dy = 4147.3 分辨率可以从显示分辨率与图像分辨率两个方向来分类。 [1]显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的, 显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。 可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。 显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。 [2]图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。 四.畸变参数(与点集如何畸变的2D几何相关。) 采用理想针孔模型,由于通过针孔的光线少,摄像机曝光太慢,在实际使用中均采用透镜,可以使图像生成迅速,但代价是引入了畸变。 有两种畸变对投影图像影响较大: 径向畸变和切向畸变。 1、径向畸变 对某些透镜,光线在远离透镜中心的地方比靠近中心的地方更加弯曲,产生“筒形”或“鱼眼”现象,称为径向畸变。 一般来讲,成像仪中心的径向畸变为0,越向边缘移动,畸变越严重。不过径向畸变可以通过下面的泰勒级数展开式来校正: xcorrected = x(1+k1r2+k2r4+k3r6) ycorrected = y(1+k1r2+k2r4+k3r6) 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 对于一般的摄像机校正,通常使用泰勒级数中的前两项k1和k2就够了;对畸变很大的摄像机,比如鱼眼透镜,可以使用第三径向畸变项k3 2、切向畸变 当成像仪被粘贴在摄像机的时候,会存在一定的误差,使得图像平面和透镜不完全平行,从而产生切向畸变。也就是说,如果一个矩形被投影到成像仪上时, 可能会变成一个梯形。切向畸变可以通过如下公式来校正: xcorrected = x + [ 2p1y + p2 (r2 + 2x2) ] ycorrected = y + [ 2p2x + p1 (r2 + 2y2) ] 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 五.摄像机的外参数 旋转向量(大小为1×3的矢量或旋转矩阵3×3)和平移向量(tx,ty,tz)。 旋转向量:旋转向量是旋转矩阵紧凑的变现形式,旋转向量为1×3的行矢量。 r就是旋转向量,旋转向量的方向是旋转轴 ,旋转向量的模为围绕旋转轴旋转的角度。 通过上面的公式,我们就可以求解出旋转矩阵R。同样的已知旋转矩阵,我们也可以通过下面的公式求解得到旋转向量: 。

大家在看

recommend-type

s典型程序例子.docx

s典型程序例子.docx
recommend-type

data10m39b_10机39节点数据_39节点_节点_

此代码IEEE10机39节点标准系统的基于MATLAB的暂态源程序数据,可以实现系统暂态稳定性分析
recommend-type

IS-GPS-200N ICD文件

2022年8月最新发布
recommend-type

[] - 2023-08-09 算法工程师炼丹Tricks手册(附1090页PDF下载).pdf

kaggle竞赛资料,AI人工智能算法介绍,技术详解 kaggle竞赛资料,AI人工智能算法介绍,技术详解 kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解
recommend-type

马尔科夫车速预测的代码.txt

利用马尔科夫对未来车速进行预测,在matlab环境下实现

最新推荐

recommend-type

基于MATLAB的雷达数字信号处理.pdf

【基于MATLAB的雷达数字信号处理】 在雷达技术中,MATLAB作为一个强大的数值计算和可视化工具,被广泛用于设计和模拟雷达系统的数字信号处理。本教程的目标是引导初学者掌握如何利用MATLAB来分析和处理雷达信号,...
recommend-type

实例详解Matlab 与 Python 的区别

【Matlab 与 Python 的区别】 Matlab和Python都是广泛使用的编程语言,但它们各自具有独特的特性和适用场景。本文将深入探讨这两者之间的差异,以帮助您根据项目需求做出合适的选择。 **Python 简介** Python是一种...
recommend-type

学生信息管理系统-----------无数据库版本

学生信息管理系统-----------无数据库版本。资源来源于网络分享,如有侵权请告知!
recommend-type

GitHub Classroom 创建的C语言双链表实验项目解析

资源摘要信息: "list_lab2-AquilesDiosT"是一个由GitHub Classroom创建的实验项目,该项目涉及到数据结构中链表的实现,特别是双链表(doble lista)的编程练习。实验的目标是通过编写C语言代码,实现一个双链表的数据结构,并通过编写对应的测试代码来验证实现的正确性。下面将详细介绍标题和描述中提及的知识点以及相关的C语言编程概念。 ### 知识点一:GitHub Classroom的使用 - **GitHub Classroom** 是一个教育工具,旨在帮助教师和学生通过GitHub管理作业和项目。它允许教师创建作业模板,自动为学生创建仓库,并提供了一个清晰的结构来提交和批改学生作业。在这个实验中,"list_lab2-AquilesDiosT"是由GitHub Classroom创建的项目。 ### 知识点二:实验室参数解析器和代码清单 - 实验参数解析器可能是指实验室中用于管理不同实验配置和参数设置的工具或脚本。 - "Antes de Comenzar"(在开始之前)可能是一个实验指南或说明,指示了实验的前提条件或准备工作。 - "实验室实务清单"可能是指实施实验所需遵循的步骤或注意事项列表。 ### 知识点三:C语言编程基础 - **C语言** 作为编程语言,是实验项目的核心,因此在描述中出现了"C"标签。 - **文件操作**:实验要求只可以操作`list.c`和`main.c`文件,这涉及到C语言对文件的操作和管理。 - **函数的调用**:`test`函数的使用意味着需要编写测试代码来验证实验结果。 - **调试技巧**:允许使用`printf`来调试代码,这是C语言程序员常用的一种简单而有效的调试方法。 ### 知识点四:数据结构的实现与应用 - **链表**:在C语言中实现链表需要对结构体(struct)和指针(pointer)有深刻的理解。链表是一种常见的数据结构,链表中的每个节点包含数据部分和指向下一个节点的指针。实验中要求实现的双链表,每个节点除了包含指向下一个节点的指针外,还包含一个指向前一个节点的指针,允许双向遍历。 ### 知识点五:程序结构设计 - **typedef struct Node Node;**:这是一个C语言中定义类型别名的语法,可以使得链表节点的声明更加清晰和简洁。 - **数据结构定义**:在`Node`结构体中,`void * data;`用来存储节点中的数据,而`Node * next;`用来指向下一个节点的地址。`void *`表示可以指向任何类型的数据,这提供了灵活性来存储不同类型的数据。 ### 知识点六:版本控制系统Git的使用 - **不允许使用git**:这是实验的特别要求,可能是为了让学生专注于学习数据结构的实现,而不涉及版本控制系统的使用。在实际工作中,使用Git等版本控制系统是非常重要的技能,它帮助开发者管理项目版本,协作开发等。 ### 知识点七:项目文件结构 - **文件命名**:`list_lab2-AquilesDiosT-main`表明这是实验项目中的主文件。在实际的文件系统中,通常会有多个文件来共同构成一个项目,如源代码文件、头文件和测试文件等。 总结而言,"list_lab2-AquilesDiosT"实验项目要求学生运用C语言编程知识,实现双链表的数据结构,并通过编写测试代码来验证实现的正确性。这个过程不仅考察了学生对C语言和数据结构的掌握程度,同时也涉及了软件开发中的基本调试方法和文件操作技能。虽然实验中禁止了Git的使用,但在现实中,版本控制的技能同样重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【三态RS锁存器CD4043的秘密】:从入门到精通的电路设计指南(附实际应用案例)

# 摘要 三态RS锁存器CD4043是一种具有三态逻辑工作模式的数字电子元件,广泛应用于信号缓冲、存储以及多路数据选择等场合。本文首先介绍了CD4043的基础知识和基本特性,然后深入探讨其工作原理和逻辑行为,紧接着阐述了如何在电路设计中实践运用CD4043,并提供了高级应用技巧和性能优化策略。最后,针对CD4043的故障诊断与排错进行了详细讨论,并通过综合案例分析,指出了设计挑战和未来发展趋势。本文旨在为电子工程师提供全面的CD4043应用指南,同时为相关领域的研究提供参考。 # 关键字 三态RS锁存器;CD4043;电路设计;信号缓冲;故障诊断;微控制器接口 参考资源链接:[CD4043
recommend-type

霍夫曼四元编码matlab

霍夫曼四元码(Huffman Coding)是一种基于频率最优的编码算法,常用于数据压缩中。在MATLAB中,你可以利用内置函数来生成霍夫曼树并创建对应的编码表。以下是简单的步骤: 1. **收集数据**:首先,你需要一个数据集,其中包含每个字符及其出现的频率。 2. **构建霍夫曼树**:使用`huffmandict`函数,输入字符数组和它们的频率,MATLAB会自动构建一棵霍夫曼树。例如: ```matlab char_freq = [freq1, freq2, ...]; % 字符频率向量 huffTree = huffmandict(char_freq);
recommend-type

MATLAB在AWS上的自动化部署与运行指南

资源摘要信息:"AWS上的MATLAB是MathWorks官方提供的参考架构,旨在简化用户在Amazon Web Services (AWS) 上部署和运行MATLAB的流程。该架构能够让用户自动执行创建和配置AWS基础设施的任务,并确保可以在AWS实例上顺利运行MATLAB软件。为了使用这个参考架构,用户需要拥有有效的MATLAB许可证,并且已经在AWS中建立了自己的账户。 具体的参考架构包括了分步指导,架构示意图以及一系列可以在AWS环境中执行的模板和脚本。这些资源为用户提供了详细的步骤说明,指导用户如何一步步设置和配置AWS环境,以便兼容和利用MATLAB的各种功能。这些模板和脚本是自动化的,减少了手动配置的复杂性和出错概率。 MathWorks公司是MATLAB软件的开发者,该公司提供了广泛的技术支持和咨询服务,致力于帮助用户解决在云端使用MATLAB时可能遇到的问题。除了MATLAB,MathWorks还开发了Simulink等其他科学计算软件,与MATLAB紧密集成,提供了模型设计、仿真和分析的功能。 MathWorks对云环境的支持不仅限于AWS,还包括其他公共云平台。用户可以通过访问MathWorks的官方网站了解更多信息,链接为www.mathworks.com/cloud.html#PublicClouds。在这个页面上,MathWorks提供了关于如何在不同云平台上使用MATLAB的详细信息和指导。 在AWS环境中,用户可以通过参考架构自动化的模板和脚本,快速完成以下任务: 1. 创建AWS资源:如EC2实例、EBS存储卷、VPC(虚拟私有云)和子网等。 2. 配置安全组和网络访问控制列表(ACLs),以确保符合安全最佳实践。 3. 安装和配置MATLAB及其相关产品,包括Parallel Computing Toolbox、MATLAB Parallel Server等,以便利用多核处理和集群计算。 4. 集成AWS服务,如Amazon S3用于存储,AWS Batch用于大规模批量处理,Amazon EC2 Spot Instances用于成本效益更高的计算任务。 此外,AWS上的MATLAB架构还包括了监控和日志记录的功能,让用户能够跟踪和分析运行状况,确保应用程序稳定运行。用户还可以根据自己的需求自定义和扩展这些模板和脚本。 在使用AWS上的MATLAB之前,用户需要了解MathWorks的许可协议,明确自己的许可证是否允许在云环境中使用MATLAB,并确保遵守相关法律法规。MathWorks提供了广泛的资源和支持,帮助用户快速上手,有效利用AWS资源,以及在云端部署和扩展MATLAB应用程序。 综上所述,AWS上的MATLAB参考架构是为希望在AWS云平台上部署MATLAB的用户提供的一种快速、简便的解决方案。它不仅减少了手动配置的复杂性,还为用户提供了广泛的资源和指导,以确保用户能够在云环境中高效、安全地使用MATLAB。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

铁路售票系统用例图:异常流处理的黄金法则

![铁路售票系统用例图:异常流处理的黄金法则](https://opengraph.githubassets.com/afac9d71167fe51e2e95e6b89ecf588c94077f4e2d4e82c217ba436f21dce30d/DarshanGH/Railway-Ticket-Booking-System) # 摘要 本文全面探讨了铁路售票系统的异常流处理问题,阐述了用例图在系统设计中的重要性及其绘制方法,同时分析了异常流的定义、设计原则、最佳实践及其在铁路售票系统中的应用。文章进一步深入到异常流识别、分类、处理流程设计以及用户界面处理的策略,确保异常情况下的系统稳定性和