用pytorch实现mobielnetv3代码
时间: 2024-04-17 18:27:03 浏览: 141
当然可以!以下是一个使用PyTorch实现MobileNetV3的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBNActivation(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, groups=1):
super(ConvBNActivation, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU6(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.activation(x)
return x
class InvertedResidual(nn.Module):
def __init__(self, in_channels, out_channels, stride, expansion_factor):
super(InvertedResidual, self).__init__()
self.stride = stride
hidden_dim = int(round(in_channels * expansion_factor))
layers = []
if expansion_factor != 1:
layers.append(ConvBNActivation(in_channels, hidden_dim, kernel_size=1))
layers.extend([
ConvBNActivation(hidden_dim, hidden_dim, kernel_size=3, stride=stride, padding=1, groups=hidden_dim),
nn.Conv2d(hidden_dim, out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels)
])
self.conv = nn.Sequential(*layers)
self.use_res_connect = stride == 1 and in_channels == out_channels
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV3(nn.Module):
def __init__(self, num_classes=1000, width_multiplier=1.0):
super(MobileNetV3, self).__init__()
input_channels = int(16 * width_multiplier)
# 第一个卷积层
layers = [
ConvBNActivation(3, input_channels, kernel_size=3, stride=2, padding=1)
]
# 中间的Inverted Residual块
layers.extend([
InvertedResidual(input_channels, int(16 * width_multiplier), stride=1, expansion_factor=1),
InvertedResidual(int(16 * width_multiplier), int(24 * width_multiplier), stride=2, expansion_factor=6),
InvertedResidual(int(24 * width_multiplier), int(24 * width_multiplier), stride=1, expansion_factor=6),
InvertedResidual(int(24 * width_multiplier), int(40 * width_multiplier), stride=2, expansion_factor=6),
InvertedResidual(int(40 * width_multiplier), int(40 * width_multiplier), stride=1, expansion_factor=6),
InvertedResidual(int(40 * width_multiplier), int(40 * width_multiplier), stride=1, expansion_factor=6),
InvertedResidual(int(40 * width_multiplier), int(80 * width_multiplier), stride=2, expansion_factor=6),
InvertedResidual(int(80 * width_multiplier), int(80 * width_multiplier), stride=1, expansion_factor=6),
InvertedResidual(int(80 * width_multiplier), int(80 * width_multiplier), stride=1, expansion_factor=6),
InvertedResidual(int(80 * width_multiplier), int(112 * width_multiplier), stride=1, expansion_factor=6),
InvertedResidual(int(112 * width_multiplier), int(112 * width_multiplier), stride=1, expansion_factor=6),
InvertedResidual(int(112 * width_multiplier), int(160 * width_multiplier), stride=2, expansion_factor=6),
InvertedResidual(int(160 * width_multiplier), int(160 * width_multiplier), stride=1, expansion_factor=6),
InvertedResidual(int(160 * width_multiplier), int(160 * width_multiplier), stride=1, expansion_factor=6)
])
# 最后的卷积层
layers.extend([
ConvBNActivation(int(160 * width_multiplier), int(960 * width_multiplier), kernel_size=1),
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(int(960 * width_multiplier), int(1280 * width_multiplier), kernel_size=1),
nn.Hardswish(inplace=True)
])
# 分类器
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(int(1280 * width_multiplier), num_classes)
)
self.features = nn.Sequential(*layers)
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# 测试网络结构
model = MobileNetV3()
print(model)
```
这是一个基本的MobileNetV3网络实现,包括了ConvBNActivation、InvertedResidual和MobileNetV3三个模块。请注意,这只是一个示例代码,你可以根据自己的需求进行修改和扩展。
阅读全文