PixelCNN代码
时间: 2025-01-02 08:43:43 浏览: 11
### PixelCNN代码实现
为了展示PixelCNN的代码实现,下面提供了一个简化版本的PyTorch实现。此实现基于推荐像素级卷积神经网络增强版(pixel-cNN++),该架构在CIFAR-10数据集上达到了2.92 bits per dimension的效果[^1]。
#### 导入必要的库
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
```
#### 定义PixelCNN模型类
```python
class MaskedConv2d(nn.Conv2d):
def __init__(self, mask_type, *args, **kwargs):
super(MaskedConv2d, self).__init__(*args, **kwargs)
assert mask_type in {'A', 'B'}
self.register_buffer('mask', self.weight.data.clone())
_, depth, height, width = self.mask.size()
self.mask.fill_(1)
if mask_type == 'A':
self.mask[:, :, height // 2, width // 2:] = 0
self.mask[:, :, height // 2 + 1:, :] = 0
else:
self.mask[:, :, height // 2, width // 2 + 1:] = 0
self.mask[:, :, height // 2 + 1:, :] = 0
def forward(self, x):
self.weight.data *= self.mask
return super(MaskedConv2d, self).forward(x)
class PixelCNN(nn.Module):
def __init__(self, input_channels=1, dim_hidden=64, n_layers=15):
super(PixelCNN, self).__init__()
layers = []
layers.append(MaskedConv2d(mask_type='A', in_channels=input_channels,
out_channels=dim_hidden, kernel_size=7, padding=3))
layers.append(nn.ReLU(True))
for _ in range(n_layers - 2):
layers.append(MaskedConv2d(mask_type='B',
in_channels=dim_hidden,
out_channels=dim_hidden,
kernel_size=7,
padding=3))
layers.append(nn.BatchNorm2d(dim_hidden))
layers.append(nn.ReLU(True))
layers.append(MaskedConv2d(mask_type='B',
in_channels=dim_hidden,
out_channels=input_channels,
kernel_size=7,
padding=3))
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
```
#### 训练过程设置
```python
def train(model, device, train_loader, optimizer, epoch):
model.train()
criterion = nn.MSELoss()
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, data)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} ({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PixelCNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
for epoch in range(1, 11):
train(model, device, train_loader, optimizer, epoch)
```
上述代码实现了基本的PixelCNN训练流程,并使用了CIFAR-10数据集进行实验验证。注意这里的损失函数选择了均方误差(MSE Loss),这取决于具体的应用场景和需求调整优化器的选择以及超参数配置。
阅读全文