GAN 朋友torch
时间: 2023-10-30 22:00:12 浏览: 155
嗨!对于GAN(生成对抗网络)在PyTorch中的实现,你可以按照以下步骤进行操作:
步骤1:导入所需的库
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
```
步骤2:定义生成器和判别器模型
```python
# 生成器模型
class Generator(nn.Module):
def __init__(self, input_dim, output_dim):
super(Generator, self).__init__()
self.fc = nn.Linear(input_dim, 256)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(256, output_dim)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.fc2(x)
x = self.tanh(x)
return x
# 判别器模型
class Discriminator(nn.Module):
def __init__(self, input_dim):
super(Discriminator, self).__init__()
self.fc = nn.Linear(input_dim, 256)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(256, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return x
```
步骤3:训练GAN模型
```python
# 定义训练函数
def train(generator, discriminator, dataloader, num_epochs, generator_optimizer, discriminator_optimizer, criterion):
generator.train()
discriminator.train()
for epoch in range(num_epochs):
for i, real_images in enumerate(dataloader):
阅读全文