如何获取kmeans聚类后的结果,在进行降维,并使用pyecharts对聚类后结果绘制散点图
时间: 2024-12-20 08:21:11 浏览: 8
KMeans++.zip_K-means聚类结果_Kmeans++_kmeans 图_散点图聚类_聚类散图
5星 · 资源好评率100%
获取K-means聚类结果并进行降维通常涉及以下几个步骤:
1. **导入必要的库**[^4]:
```python
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import pandas as pd
import numpy as np
import pyecharts.options as opts
from pyecharts.charts import Scatter
```
2. **加载数据(假设数据存储在一个pandas DataFrame中)**[^5]:
```python
data = pd.read_csv('your_data.csv')
```
3. **预处理数据**[^6]:
```python
X = data.iloc[:, :-1].values # 假设最后一列是标签,我们只取前n-1列作为特征
```
4. **执行K-means聚类**[^7]:
```python
kmeans = KMeans(n_clusters=3) # 假设我们有3个簇
kmeans.fit(X)
labels = kmeans.labels_ # 获得每个样本的聚类标签
```
5. **降维**[^8]:
```python
pca = PCA(n_components=2) # 可以选择2D作为可视化方便
X_pca = pca.fit_transform(X)
```
6. **创建Pyecharts散点图**[^9]:
```python
scatter = (
Scatter()
.add_xaxis([X_pca[i][0] for i in range(len(X_pca))])
.add_yaxis('Cluster', [X_pca[i][1] for i in range(len(X_pca))], symbol_size=10, label_color='category')
.set_series_opts(datazoom_start=0, datazoom_end=1)
.set_global_opts(title_opts=opts.TitleOpts(title='K-Means Clustering Result'))
)
scatter.render('cluster_result.html') # 保存图表到HTML文件
```
阅读全文