ubuntu22.04配置yolov8
时间: 2024-10-06 13:01:55 浏览: 59
Ubuntu 22.04 配置 YOLOv8(You Only Look Once版本8)是一个涉及深度学习框架和安装依赖项的过程。以下是简要步骤:
1. **更新系统**:
```
sudo apt update && sudo apt upgrade
```
2. **安装依赖**:
- 更新包列表并安装必要的库(如Python和CUDA)
```
sudo apt-get install python3-pip python3-dev build-essential cmake libprotobuf-dev libleveldb-dev libsnappy-dev libzmq3-dev libopencv-dev libtbb2 libtbb-dev libopenblas-dev gfortran libncurses5-dev libhdf5-dev protobuf-compiler libjpeg-dev libpng-dev libwebp-dev libcurl4-openssl-dev pkg-config libsqlite3-dev
```
3. **安装PyTorch**:
```
git clone https://github.com/pytorch/pytorch.git
cd pytorch
export CUDA_HOME=/usr/local/cuda
./tools/install.py --cuda-version $(nvcc --version | awk '/release/{print $3}' | sed 's/\./_/g')
pip install torch torchvision
```
4. **下载YOLOv8源码**:
```
git clone https://github.com/AlexeyAB/darknet.git
cd darknet
```
5. **修改Makefile**:
将`USE_PYTORCH=0`改为`USE_PYTORCH=1`,以启用PyTorch支持。
6. **构建YOLOv8**:
```
make -j$(nproc)
```
或者针对特定模型(例如yolov8-tiny):
```
make yolo tiny.weights darknet_yolov8.cfg
```
7. **测试模型**:
完成后,你可以通过运行一个示例检测图片或视频来测试模型是否配置成功:
```bash
./darknet detect cfg/yolov8.cfg yolov8.weights data/images/example.jpg
```
阅读全文