aes加密算法S盒c语言实现
时间: 2024-04-30 22:15:08 浏览: 216
AES(Advanced Encryption Standard)是一种对称加密算法,它是目前应用最广泛的加密算法之一。AES算法使用了一个称为S盒(Substitution Box)的查找表来进行字节替换,以增加加密的复杂性和安全性。
以下是一个使用C语言实现AES算法中S盒的示例代码:
```c
#include <stdio.h>
// 定义AES的S盒
unsigned char sBox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
// 省略剩余的内容...
};
int main() {
// 输出S盒的内容
for (int i = 0; i < 256; i++) {
printf("%02x ", sBox[i]);
if ((i + 1) % 16 == 0) {
printf("\n");
}
}
return 0;
}
```
上述代码中,我们定义了一个256字节大小的数组sBox,用来存储AES算法中的S盒。S盒是一个16×16的二维数组,每个元素都是一个8位无符号整数,表示字节替换后的结果。
在示例代码中,我们通过循环遍历输出了S盒的内容。每行输出16个字节,以便更好地展示S盒的结构。
相关问题
aes加密算法C语言实现
以下是AES加密算法的C语言实现:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define Nb 4
#define Nk 4
#define Nr 10
typedef unsigned char state_t[4][4];
const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
const uint8_t Rcon[11][4] = {
{0x00, 0x00, 0x00, 0x00},
{0x01, 0x00, 0x00, 0x00},
{0x02, 0x00, 0x00, 0x00},
{0x04, 0x00, 0x00, 0x00},
{0x08, 0x00, 0x00, 0x00},
{0x10, 0x00, 0x00, 0x00},
{0x20, 0x00, 0x00, 0x00},
{0x40, 0x00, 0x00, 0x00},
{0x80, 0x00, 0x00, 0x00},
{0x1b, 0x00, 0x00, 0x00},
{0x36, 0x00, 0x00, 0x00}
};
void SubBytes(state_t *state) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < Nb; j++) {
(*state)[i][j] = sbox[(*state)[i][j]];
}
}
}
void ShiftRows(state_t *state) {
uint8_t temp;
// Shift second row
temp = (*state)[1][0];
(*state)[1][0] = (*state)[1][1];
(*state)[1][1] = (*state)[1][2];
(*state)[1][2] = (*state)[1][3];
(*state)[1][3] = temp;
// Shift third row
temp = (*state)[2][0];
(*state)[2][0] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[2][1];
(*state)[2][1] = (*state)[2][3];
(*state)[2][3] = temp;
// Shift fourth row
temp = (*state)[3][3];
(*state)[3][3] = (*state)[3][2];
(*state)[3][2] = (*state)[3][1];
(*state)[3][1] = (*state)[3][0];
(*state)[3][0] = temp;
}
void MixColumns(state_t *state) {
uint8_t a, b, c, d;
for (int i = 0; i < Nb; i++) {
a = (*state)[0][i];
b = (*state)[1][i];
c = (*state)[2][i];
d = (*state)[3][i];
(*state)[0][i] = (uint8_t)(0x02 * a + 0x03 * b + c + d) % 256;
(*state)[1][i] = (uint8_t)(a + 0x02 * b + 0x03 * c + d) % 256;
(*state)[2][i] = (uint8_t)(a + b + 0x02 * c + 0x03 * d) % 256;
(*state)[3][i] = (uint8_t)(0x03 * a + b + c + 0x02 * d) % 256;
}
}
void AddRoundKey(state_t *state, uint8_t *RoundKey) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < Nb; j++) {
(*state)[i][j] ^= RoundKey[i * Nb + j];
}
}
}
void KeyExpansion(uint8_t *key, uint8_t *RoundKey) {
uint8_t temp[4];
int i = 0;
// Copy the key to the RoundKey
for (i = 0; i < Nk; i++) {
RoundKey[i * 4] = key[i * 4];
RoundKey[i * 4 + 1] = key[i * 4 + 1];
RoundKey[i * 4 + 2] = key[i * 4 + 2];
RoundKey[i * 4 + 3] = key[i * 4 + 3];
}
i = Nk;
while (i < Nb * (Nr + 1)) {
// Copy previous word to temp
temp[0] = RoundKey[(i - 1) * 4];
temp[1] = RoundKey[(i - 1) * 4 + 1];
temp[2] = RoundKey[(i - 1) * 4 + 2];
temp[3] = RoundKey[(i - 1) * 4 + 3];
if (i % Nk == 0) {
uint8_t t = temp[0];
temp[0] = sbox[temp[1]] ^ Rcon[i / Nk][0];
temp[1] = sbox[temp[2]];
temp[2] = sbox[temp[3]];
temp[3] = sbox[t];
}
else if (Nk > 6 && i % Nk == 4) {
temp[0] = sbox[temp[0]];
temp[1] = sbox[temp[1]];
temp[2] = sbox[temp[2]];
temp[3] = sbox[temp[3]];
}
RoundKey[i * 4] = RoundKey[(i - Nk) * 4] ^ temp[0];
RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^
aes加密算法c语言实现
以下是使用 OpenSSL 库进行 AES 加密和解密的示例 C 代码:
```c
#include <openssl/aes.h>
#include <string.h>
void encrypt(unsigned char *plaintext, int plaintext_len, unsigned char *key,
unsigned char *iv, unsigned char *ciphertext) {
AES_KEY aes_key;
AES_set_encrypt_key(key, 128, &aes_key);
AES_cbc_encrypt(plaintext, ciphertext, plaintext_len, &aes_key, iv, AES_ENCRYPT);
}
void decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned char *key,
unsigned char *iv, unsigned char *plaintext) {
AES_KEY aes_key;
AES_set_decrypt_key(key, 128, &aes_key);
AES_cbc_encrypt(ciphertext, plaintext, ciphertext_len, &aes_key, iv, AES_DECRYPT);
}
int main() {
unsigned char *key = (unsigned char *)"0123456789abcdef"; // 128-bit key
unsigned char *iv = (unsigned char *)"abcdef0123456789"; // 128-bit IV
unsigned char plaintext[] = "Hello, world!";
int plaintext_len = strlen((char *)plaintext);
// Determine the required size of the ciphertext buffer
int ciphertext_len = ((plaintext_len - 1) / AES_BLOCK_SIZE + 1) * AES_BLOCK_SIZE;
// Allocate memory for the ciphertext buffer
unsigned char *ciphertext = malloc(ciphertext_len);
// Encrypt the plaintext
encrypt(plaintext, plaintext_len, key, iv, ciphertext);
// Print the ciphertext
printf("Ciphertext: ");
for (int i = 0; i < ciphertext_len; i++) {
printf("%02x", ciphertext[i]);
}
printf("\n");
// Allocate memory for the decrypted plaintext buffer
unsigned char *decrypted_plaintext = malloc(ciphertext_len);
// Decrypt the ciphertext
decrypt(ciphertext, ciphertext_len, key, iv, decrypted_plaintext);
// Print the decrypted plaintext
printf("Decrypted plaintext: %s\n", decrypted_plaintext);
// Free memory
free(ciphertext);
free(decrypted_plaintext);
return 0;
}
```
在上述代码中,我们使用了 OpenSSL 库的 AES 函数来实现加密和解密功能。其中,`AES_set_encrypt_key` 和 `AES_set_decrypt_key` 函数用于设置加密和解密所需的密钥,`AES_cbc_encrypt` 函数用于实现 CBC 模式的加密和解密。在主函数中,我们首先定义了一个 128 位的密钥和 IV,然后分别对明文进行加密和解密,并输出加密后的密文和解密后的明文。需要注意的是,为了方便输出,我们在代码中使用了 `printf` 函数,如果在实际应用中需要保证加密后的密文不被修改,应该使用更安全的输出方式,如将密文写入文件或发送到网络中。
阅读全文