aes加密算法S盒c语言实现

时间: 2024-04-30 11:15:08 浏览: 19
AES(Advanced Encryption Standard)是一种对称加密算法,它是目前应用最广泛的加密算法之一。AES算法使用了一个称为S盒(Substitution Box)的查找表来进行字节替换,以增加加密的复杂性和安全性。 以下是一个使用C语言实现AES算法中S盒的示例代码: ```c #include <stdio.h> // 定义AES的S盒 unsigned char sBox[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 省略剩余的内容... }; int main() { // 输出S盒的内容 for (int i = 0; i < 256; i++) { printf("%02x ", sBox[i]); if ((i + 1) % 16 == 0) { printf("\n"); } } return 0; } ``` 上述代码中,我们定义了一个256字节大小的数组sBox,用来存储AES算法中的S盒。S盒是一个16×16的二维数组,每个元素都是一个8位无符号整数,表示字节替换后的结果。 在示例代码中,我们通过循环遍历输出了S盒的内容。每行输出16个字节,以便更好地展示S盒的结构。
相关问题

aes加密算法c语言实现

以下是基于 OpenSSL 库的 AES 加密算法 C 语言实现示例: ```c #include <openssl/aes.h> #include <string.h> #define AES_BLOCK_SIZE 16 void aes_encrypt(unsigned char *plaintext, int plaintext_len, unsigned char *key, unsigned char *iv, unsigned char *ciphertext) { AES_KEY aes_key; AES_set_encrypt_key(key, 128, &aes_key); AES_cbc_encrypt(plaintext, ciphertext, plaintext_len, &aes_key, iv, AES_ENCRYPT); } void aes_decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned char *key, unsigned char *iv, unsigned char *plaintext) { AES_KEY aes_key; AES_set_decrypt_key(key, 128, &aes_key); AES_cbc_encrypt(ciphertext, plaintext, ciphertext_len, &aes_key, iv, AES_DECRYPT); } ``` 其中,`aes_encrypt` 函数接受明文、密钥和初始向量,输出密文;`aes_decrypt` 函数接受密文、密钥和初始向量,输出明文。 示例中使用的是 CBC 模式,也可以使用其他模式,如 ECB、CFB、OFB 等,具体可以参考 OpenSSL 库的文档。

aes加密算法C语言实现

以下是AES加密算法的C语言实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define Nb 4 #define Nk 4 #define Nr 10 typedef unsigned char state_t[4][4]; const uint8_t sbox[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; const uint8_t rsbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; const uint8_t Rcon[11][4] = { {0x00, 0x00, 0x00, 0x00}, {0x01, 0x00, 0x00, 0x00}, {0x02, 0x00, 0x00, 0x00}, {0x04, 0x00, 0x00, 0x00}, {0x08, 0x00, 0x00, 0x00}, {0x10, 0x00, 0x00, 0x00}, {0x20, 0x00, 0x00, 0x00}, {0x40, 0x00, 0x00, 0x00}, {0x80, 0x00, 0x00, 0x00}, {0x1b, 0x00, 0x00, 0x00}, {0x36, 0x00, 0x00, 0x00} }; void SubBytes(state_t *state) { for (int i = 0; i < 4; i++) { for (int j = 0; j < Nb; j++) { (*state)[i][j] = sbox[(*state)[i][j]]; } } } void ShiftRows(state_t *state) { uint8_t temp; // Shift second row temp = (*state)[1][0]; (*state)[1][0] = (*state)[1][1]; (*state)[1][1] = (*state)[1][2]; (*state)[1][2] = (*state)[1][3]; (*state)[1][3] = temp; // Shift third row temp = (*state)[2][0]; (*state)[2][0] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[2][1]; (*state)[2][1] = (*state)[2][3]; (*state)[2][3] = temp; // Shift fourth row temp = (*state)[3][3]; (*state)[3][3] = (*state)[3][2]; (*state)[3][2] = (*state)[3][1]; (*state)[3][1] = (*state)[3][0]; (*state)[3][0] = temp; } void MixColumns(state_t *state) { uint8_t a, b, c, d; for (int i = 0; i < Nb; i++) { a = (*state)[0][i]; b = (*state)[1][i]; c = (*state)[2][i]; d = (*state)[3][i]; (*state)[0][i] = (uint8_t)(0x02 * a + 0x03 * b + c + d) % 256; (*state)[1][i] = (uint8_t)(a + 0x02 * b + 0x03 * c + d) % 256; (*state)[2][i] = (uint8_t)(a + b + 0x02 * c + 0x03 * d) % 256; (*state)[3][i] = (uint8_t)(0x03 * a + b + c + 0x02 * d) % 256; } } void AddRoundKey(state_t *state, uint8_t *RoundKey) { for (int i = 0; i < 4; i++) { for (int j = 0; j < Nb; j++) { (*state)[i][j] ^= RoundKey[i * Nb + j]; } } } void KeyExpansion(uint8_t *key, uint8_t *RoundKey) { uint8_t temp[4]; int i = 0; // Copy the key to the RoundKey for (i = 0; i < Nk; i++) { RoundKey[i * 4] = key[i * 4]; RoundKey[i * 4 + 1] = key[i * 4 + 1]; RoundKey[i * 4 + 2] = key[i * 4 + 2]; RoundKey[i * 4 + 3] = key[i * 4 + 3]; } i = Nk; while (i < Nb * (Nr + 1)) { // Copy previous word to temp temp[0] = RoundKey[(i - 1) * 4]; temp[1] = RoundKey[(i - 1) * 4 + 1]; temp[2] = RoundKey[(i - 1) * 4 + 2]; temp[3] = RoundKey[(i - 1) * 4 + 3]; if (i % Nk == 0) { uint8_t t = temp[0]; temp[0] = sbox[temp[1]] ^ Rcon[i / Nk][0]; temp[1] = sbox[temp[2]]; temp[2] = sbox[temp[3]]; temp[3] = sbox[t]; } else if (Nk > 6 && i % Nk == 4) { temp[0] = sbox[temp[0]]; temp[1] = sbox[temp[1]]; temp[2] = sbox[temp[2]]; temp[3] = sbox[temp[3]]; } RoundKey[i * 4] = RoundKey[(i - Nk) * 4] ^ temp[0]; RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^

相关推荐

最新推荐

recommend-type

基于C语言实现的aes256加密算法示例

主要介绍了基于C语言实现的aes256加密算法,结合具体实例形式详细分析了C语言实现的aes256加密算法实现步骤与使用技巧,需要的朋友可以参考下
recommend-type

AES原理及c语言实现

AES算法:对称密码算法根据对明文消息加密方式的不同可分为两大类,即分组...由于外部输入的加密密钥K长度有限,所以在AES中要用一个密钥扩展程序( KeyExpansion) 把外部密钥K扩展成更长的比特串,以生成各轮的加密密钥
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信