写出Lovasz-Softmax Loss的代码
时间: 2024-09-18 17:10:22 浏览: 47
Loss_ToolBox-PyTorch:PyTorch实现焦点损失和Lovasz-Softmax损失
Lovasz-Softmax Loss是一种用于处理多类别分割任务的损失函数,尤其适用于那些类别不平衡的数据集。它结合了传统softmax交叉熵和Jaccard相似度的思想。以下是使用PyTorch实现 Lovasz-Softmax Loss的基本代码:
```python
import torch
from scipy.special import softmax
def lovasz_grad(gt_sorted):
"""
Computes gradient of the Lovasz extension w.r.t sorted errors
See Alg. 1 in paper
"""
p = len(gt_sorted)
gts = gt_sorted.sum()
intersection = gts - gt_sorted.float().cumsum(0)
union = gts + (1 - gt_sorted).float().cumsum(0)
jaccard = 1. - intersection / union
if p > 1: # cover 1-pixel case
jaccard[1:] = jaccard[1:] - jaccard[:-1]
return jaccard
def lovasz_softmax_flat(probas, labels, classes='present', per_image=False, ignore=None):
"""
Multi-class Lovasz-Softmax loss
probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1).
labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
per_image: compute the loss per image instead of per batch
ignore: void class id
"""
if per_image:
loss = mean(lovasz_softmax_flat(probas[i], labels[i], classes, ignore=ignore)
for i in range(labels.size(0)))
else:
losses = []
C = probas.size(1)
if ignore is not None:
valid = (labels != ignore)
else:
valid = labels >= 0
for c in range(C):
fg = (labels == c) & valid
if classes == 'present':
fg_sum = fg.sum(dim=(1, 2))
if fg_sum.item() > 0:
if classes == 'all':
if ignore is not None:
valid_c = (labels != (c + ignore)) & valid
fg = fg & valid_c
else:
fg = fg[labels == c]
elif c not in classes:
continue
if fg.any():
if permute:
fg = fg[:, :, None].expand_as(probas)
fg = fg.contiguous().view(-1)
probas_c = probas[:, c].contiguous().view(-1)
else:
fg = fg.view(-1)
probas_c = probas[fg, c]
lab_c = labels.new_full((probas_c.numel(),), c, dtype=torch.long)
lab_c = lab_c[fg]
loss = lovasz_loss(probas_c, lab_c, reduce=False)
losses.append(loss.view(-1, 1))
loss = sum(losses)
return loss
# 使用示例
probas = torch.rand(5, 10, 28, 28)
labels = torch.randint(0, 9, (5, 28, 28))
loss = lovasz_softmax_flat(probas, labels)
```
注意,这个实现需要`scipy`库来进行softmax操作,以及一些额外的计算。如果你的环境中没有安装`scipy`,可以尝试其他开源库如`pylops`提供类似的功能。同时,`permute`变量在这里被假设为True,表示是否需要对输入概率分布进行维度转换。
阅读全文