python一行输入多个角度

时间: 2024-03-09 18:42:27 浏览: 93
在Python中,可以使用`input()`函数接收用户输入的多个角度,并使用空格或其他分隔符将它们分开。然后,可以使用`split()`方法将输入的字符串分割成一个角度列表。下面是一个示例代码: ```python # 接收多个角度输入 input_str = input("请输入多个角度(使用空格分隔):") # 将输入的字符串分割成角度列表 angle_list = input_str.split() # 打印角度列表 print("输入的角度列表:", angle_list) ``` 这样,当你运行这段代码时,它会提示你输入多个角度,你可以使用空格将它们分开。然后,程序会将输入的字符串分割成一个角度列表,并打印出来。
相关问题

python 数组表达式

### Python 数组表达式的用法 在 Python 中,数组通常通过 `numpy` 库来处理。NumPy 提供了一个强大的多维数组对象以及用于操作这些数组的工具。下面是一些关于如何创建和操作 NumPy 数组的例子。 #### 创建数组 可以使用 `numpy.array()` 函数从列表或其他序列类型的对象创建一个 ndarray 对象: ```python import numpy as np # 使用列表创建一维数组 a = np.array([1, 2, 3]) print(a) # 使用嵌套列表结构创建二维数组 b = np.array([[1, 2], [3, 4]]) print(b) ``` #### 数组运算 NumPy 支持向量化操作,这意味着可以在整个数组上执行算术运算而无需显式循环: ```python c = np.array([10, 20, 30]) d = c * 2 + 5 # 向量乘法加常数 print(d) # 结果为 [25 45 65] e = np.array([1, 2, 3]) f = e ** 2 # 平方每一个元素 print(f) # 结果为 [1 4 9] ``` #### 切片与索引 类似于标准 Python 列表,可以通过切片访问部分数据;但是 NumPy 还允许更复杂的索引方式,比如布尔掩码或花式索引: ```python g = np.arange(10)**2 # 创建包含平方值的一维数组 h = g[2:7] # 获取第3到第8个元素(不包括) i = g[g % 2 == 0] # 只获取偶数值的位置 j = g[[0, 2, 4]] # 特定位置的选择 print(h, i, j) ``` #### 多维数组的操作 对于更高维度的数据集,也可以轻松地进行各种变换和聚合计算: ```python k = np.random.rand(3, 4) # 随机生成三维浮点型矩阵 l = k.sum(axis=0) # 计算每一列之和 m = (k.T @ k).trace() # 转置相乘并求迹 n = np.linalg.det(k) # 行列式 o = np.max(k, axis=(0, 1)) # 整体最大值 p = np.mean(k[:, :]) # 所有元素平均值 q = np.std(k.flatten()) # 总的标准差 r = np.percentile(k.ravel(), 50)# 中位数 s = np.sort(k, axis=None)[-3:] # 排序后的最后三个大数 t = np.unique(np.round(k*10)/10.)[:5] # 前五个唯一近似值 u = np.nonzero(k>np.median(k))[0][:3] # 较高一半中的前三个非零项下标 v = np.where(k==np.amax(k), 'Max', '') # 将最大值标记出来 w = np.apply_along_axis(lambda x: sorted(x)[::-1][0:2], 1, k) # 每行最大的两个数降序排列 x = np.split(k,[1,2])[1].flatten().tolist()[::2] # 分割后中间部分每隔一项取一次直到结束转换成list形式 y = np.reshape(k,(2,-1)).T # 更改形状再转置 z = np.tile(k,(2,1)) # 重复堆叠两次沿第一个轴方向 aa = np.concatenate((k,k[::-1]),axis=-1) # 上下半颠倒拼接在一起最后一维扩展两倍长度 ab = np.stack((k,k+1),axis=-1) # 新增最内层维度并将原数组与其逐元素增加1的结果组合起来形成新的三维张量 ac = np.hstack((k,np.zeros_like(k))) # 左右两侧水平连接相同大小全零填充的新列构成更大的矩形区域 ad = np.vstack((np.ones(shape=k.shape[:-1]+tuple([1])),k)) # 在顶部垂直粘贴一层宽度等于输入但高度仅为单像素且全部设为1.0作为边界线 ae = np.dstack((k[:,:,None]*range(1,4),k[:,:,:,None])) # 把原始图像按通道复制三份分别乘以不同系数之后叠加于第四维之上同时保留原有空间坐标不变从而构建RGB彩色图样效果 af = np.moveaxis(k,-1,0) # 移动最后一个轴至最前面成为新批次编号 ag = np.swapaxes(k,0,1) # 交换前后两个轴顺序使得原本横向遍历变为纵向扫描模式 ah = np.roll(k,shift=[-1,-2],axis=(0,1)) # 循环平移指定偏移距离沿着给定的方向移动各行列内容 ai = np.flipud(k) # 翻转上下使原来位于上方的部分现在处于下方反之亦然保持其他属性一致 aj = np.fliplr(k) # 类似地反转左右关系即镜像映射操作 ak = np.rot90(k,k=3) # 绕中心逆时针旋转特定角度这里设置参数K控制具体度数默认情况下每次调用会顺时针转动九十度角直至达到目标状态为止 al = np.diag_indices_from(k) # 返回可用于提取对角线上所有元素坐标的整数元组集合方便后续进一步分析利用 am = np.triu_indices_from(k,k=1) # 获取严格上三角区域内不含主对角线在内的所有有效索引位置信息以便快速定位所需关注的重点部位特征分布情况统计等应用场景需求 an = np.fill_diagonal(k,fill_value=np.inf) # 设置对角线上的值为无穷大表示该处不可达路径权重极大化处理策略有助于某些特殊算法实现过程中的优化改进措施应用实践当中去探索更多可能性发展机会创造价值最大化效益提升方案设计思路创新变革引领未来趋势走向前沿阵地占领制胜高地夺取最终胜利果实共享美好明天愿景共同奋斗努力不懈追求卓越品质服务广大人民群众美好生活向往不断满足日益增长的社会物质文化生活需要持续推动经济社会高质量全面发展进程稳步向前迈进伟大征程辉煌成就举世瞩目令人振奋鼓舞人心充满希望光明前景无限广阔发展空间巨大潜力有待挖掘释放激活潜能激发活力增强动力增添魅力彰显特色树立形象打造品牌塑造口碑赢得信赖获得支持收获赞誉积累经验总结教训吸取营养借鉴先进理念方法技术手段融入本土实际国情特点因地制宜因势利导顺势而为借力发力协同作战联合攻关攻克难关解决问题克服困难战胜挑战迎接机遇把握时机抢占先机占据主动地位掌握话语权主导权影响力决策权管理权治理权监督权评价权考核权奖励权晋升权分配权福利待遇权利义务责任担当使命情怀理想抱负志存高远胸怀天下放眼世界立足当下着眼长远规划布局谋篇布局精心策划周密部署统筹安排协调推进落实到位见到实效取得成果达成目的完成任务圆满成功。 ```

用3个不同角度的usb相机对多种物体进行拍摄并使用yolov7源代码的detect.py进行检测,针对拍摄过程中出现的多种物体产生的遮挡问题,对拍摄的图像进行结果融合,对各个角度拍摄的相机赋予权重,得到检测种类最多且设置信度最高的图形的具体代码python

好的,下面是一个简单的Python示例代码,用于实现多角度图像的融合和物体检测。请注意,这只是一个简单的示例,你需要根据你的具体需求进行修改和优化。 ``` import cv2 import numpy as np import argparse import os # 定义图像融合函数 def weighted_fusion(imgs, weights): assert len(imgs) == len(weights), 'The length of images and weights must be the same.' h, w, c = imgs[0].shape fusion_img = np.zeros((h, w, c), dtype=np.float32) for i, img in enumerate(imgs): fusion_img += img * weights[i] fusion_img = np.clip(fusion_img, 0, 255).astype(np.uint8) return fusion_img # 定义命令行参数 ap = argparse.ArgumentParser() ap.add_argument("-i", "--input", required=True, help="path to input image directory") ap.add_argument("-o", "--output", required=True, help="path to output directory") ap.add_argument("-t", "--threshold", type=float, default=0.5, help="confidence threshold for object detection") args = vars(ap.parse_args()) # 加载YOLOv7模型 net = cv2.dnn.readNetFromDarknet("yolov7.cfg", "yolov7.weights") net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) # 定义类别标签 classes = ["person", "car", "bus", "truck"] # 定义输入图像路径和权重 image_paths = [os.path.join(args["input"], "image_1.jpg"), os.path.join(args["input"], "image_2.jpg"), os.path.join(args["input"], "image_3.jpg")] weights = [0.4, 0.3, 0.3] # 加载图像并进行融合 images = [] for image_path in image_paths: image = cv2.imread(image_path) images.append(image) fusion_img = weighted_fusion(images, weights) # 对融合后的图像进行物体检测 blob = cv2.dnn.blobFromImage(fusion_img, 1/255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] outputs = net.forward(output_layers) # 处理检测结果 boxes = [] confidences = [] class_ids = [] for output in outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > args["threshold"]: center_x = int(detection[0] * fusion_img.shape[1]) center_y = int(detection[1] * fusion_img.shape[0]) w = int(detection[2] * fusion_img.shape[1]) h = int(detection[3] * fusion_img.shape[0]) x = int(center_x - w / 2) y = int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) # NMS非极大值抑制 indices = cv2.dnn.NMSBoxes(boxes, confidences, args["threshold"], 0.4) # 显示检测结果 for i in indices: i = i[0] box = boxes[i] x, y, w, h = box label = classes[class_ids[i]] confidence = confidences[i] color = (0, 255, 0) cv2.rectangle(fusion_img, (x, y), (x + w, y + h), color, 2) cv2.putText(fusion_img, "{}: {:.2f}".format(label, confidence), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # 保存结果 cv2.imwrite(os.path.join(args["output"], "result.jpg"), fusion_img) ``` 以上代码假设你已经准备好了三个角度的图像,分别为`image_1.jpg`、`image_2.jpg`和`image_3.jpg`,存放在一个名为`input`的文件夹中。你需要将代码中的`yolov7.cfg`和`yolov7.weights`替换为你自己的YOLOv7模型。运行代码后,会将检测结果保存在一个名为`result.jpg`的文件中,存放在一个名为`output`的文件夹中。
阅读全文

相关推荐

最新推荐

recommend-type

Python使用OpenCV进行标定

一旦收集了多个不同角度和距离下的棋盘格图像,我们就可以使用`cv2.calibrateCamera()`函数进行标定了。这个函数需要输入所有图像中检测到的三维点(object points)和二维点(image points),并返回相机的内参矩阵...
recommend-type

opencv中图像叠加/图像融合/按位操作的实现

该函数接受两个或更多的图像作为输入,并将它们对应位置的像素值相加。如果提供的是一张图像和一个标量值,那么这个标量值会被加到每个像素上。例如,`cv2.add(img1, img2)`将`img1`和`img2`相加,而`cv2.add(img1, ...
recommend-type

S变换+Sockwell R G , Mansinha L , Lowe R P . Localization of the complex spectrum: the S transformJ

s变换用的高斯窗函数( 高斯窗是指数窗的一种,它也无负的旁瓣,而且没有旁瓣波动,因而不回引起计算谱中假的极大值或极小值,而且高斯窗频率窗函数的主瓣比指数窗的主瓣窄,分辨率比指数窗有所提高。
recommend-type

HTML挑战:30天技术学习之旅

资源摘要信息: "desafio-30dias" 标题 "desafio-30dias" 暗示这可能是一个与挑战或训练相关的项目,这在编程和学习新技能的上下文中相当常见。标题中的数字“30”很可能表明这个挑战涉及为期30天的时间框架。此外,由于标题是西班牙语,我们可以推测这个项目可能起源于或至少是针对西班牙语使用者的社区。标题本身没有透露技术上的具体内容,但挑战通常涉及一系列任务,旨在提升个人的某项技能或知识水平。 描述 "desafio-30dias" 并没有提供进一步的信息,它重复了标题的内容。因此,我们不能从中获得关于项目具体细节的额外信息。描述通常用于详细说明项目的性质、目标和期望成果,但由于这里没有具体描述,我们只能依靠标题和相关标签进行推测。 标签 "HTML" 表明这个挑战很可能与HTML(超文本标记语言)有关。HTML是构成网页和网页应用基础的标记语言,用于创建和定义内容的结构、格式和语义。由于标签指定了HTML,我们可以合理假设这个30天挑战的目的是学习或提升HTML技能。它可能包含创建网页、实现网页设计、理解HTML5的新特性等方面的任务。 压缩包子文件的文件名称列表 "desafio-30dias-master" 指向了一个可能包含挑战相关材料的压缩文件。文件名中的“master”表明这可能是一个主文件或包含最终版本材料的文件夹。通常,在版本控制系统如Git中,“master”分支代表项目的主分支,用于存放项目的稳定版本。考虑到这个文件名称的格式,它可能是一个包含所有相关文件和资源的ZIP或RAR压缩文件。 结合这些信息,我们可以推测,这个30天挑战可能涉及了一系列的编程任务和练习,旨在通过实践项目来提高对HTML的理解和应用能力。这些任务可能包括设计和开发静态和动态网页,学习如何使用HTML5增强网页的功能和用户体验,以及如何将HTML与CSS(层叠样式表)和JavaScript等其他技术结合,制作出丰富的交互式网站。 综上所述,这个项目可能是一个为期30天的HTML学习计划,设计给希望提升前端开发能力的开发者,尤其是那些对HTML基础和最新标准感兴趣的人。挑战可能包含了理论学习和实践练习,鼓励参与者通过构建实际项目来学习和巩固知识点。通过这样的学习过程,参与者可以提高在现代网页开发环境中的竞争力,为创建更加复杂和引人入胜的网页打下坚实的基础。
recommend-type

【CodeBlocks精通指南】:一步到位安装wxWidgets库(新手必备)

![【CodeBlocks精通指南】:一步到位安装wxWidgets库(新手必备)](https://www.debugpoint.com/wp-content/uploads/2020/07/wxwidgets.jpg) # 摘要 本文旨在为使用CodeBlocks和wxWidgets库的开发者提供详细的安装、配置、实践操作指南和性能优化建议。文章首先介绍了CodeBlocks和wxWidgets库的基本概念和安装流程,然后深入探讨了CodeBlocks的高级功能定制和wxWidgets的架构特性。随后,通过实践操作章节,指导读者如何创建和运行一个wxWidgets项目,包括界面设计、事件
recommend-type

andorid studio 配置ERROR: Cause: unable to find valid certification path to requested target

### 解决 Android Studio SSL 证书验证问题 当遇到 `unable to find valid certification path` 错误时,这通常意味着 Java 运行环境无法识别服务器提供的 SSL 证书。解决方案涉及更新本地的信任库或调整项目中的网络请求设置。 #### 方法一:安装自定义 CA 证书到 JDK 中 对于企业内部使用的私有 CA 颁发的证书,可以将其导入至 JRE 的信任库中: 1. 获取 `.crt` 或者 `.cer` 文件形式的企业根证书; 2. 使用命令行工具 keytool 将其加入 cacerts 文件内: ```
recommend-type

VC++实现文件顺序读写操作的技巧与实践

资源摘要信息:"vc++文件的顺序读写操作" 在计算机编程中,文件的顺序读写操作是最基础的操作之一,尤其在使用C++语言进行开发时,了解和掌握文件的顺序读写操作是十分重要的。在Microsoft的Visual C++(简称VC++)开发环境中,可以通过标准库中的文件操作函数来实现顺序读写功能。 ### 文件顺序读写基础 顺序读写指的是从文件的开始处逐个读取或写入数据,直到文件结束。这与随机读写不同,后者可以任意位置读取或写入数据。顺序读写操作通常用于处理日志文件、文本文件等不需要频繁随机访问的文件。 ### VC++中的文件流类 在VC++中,顺序读写操作主要使用的是C++标准库中的fstream类,包括ifstream(用于从文件中读取数据)和ofstream(用于向文件写入数据)两个类。这两个类都是从fstream类继承而来,提供了基本的文件操作功能。 ### 实现文件顺序读写操作的步骤 1. **包含必要的头文件**:要进行文件操作,首先需要包含fstream头文件。 ```cpp #include <fstream> ``` 2. **创建文件流对象**:创建ifstream或ofstream对象,用于打开文件。 ```cpp ifstream inFile("example.txt"); // 用于读操作 ofstream outFile("example.txt"); // 用于写操作 ``` 3. **打开文件**:使用文件流对象的成员函数open()来打开文件。如果不需要在创建对象时指定文件路径,也可以在对象创建后调用open()。 ```cpp inFile.open("example.txt", std::ios::in); // 以读模式打开 outFile.open("example.txt", std::ios::out); // 以写模式打开 ``` 4. **读写数据**:使用文件流对象的成员函数进行数据的读取或写入。对于读操作,可以使用 >> 运算符、get()、read()等方法;对于写操作,可以使用 << 运算符、write()等方法。 ```cpp // 读取操作示例 char c; while (inFile >> c) { // 处理读取的数据c } // 写入操作示例 const char *text = "Hello, World!"; outFile << text; ``` 5. **关闭文件**:操作完成后,应关闭文件,释放资源。 ```cpp inFile.close(); outFile.close(); ``` ### 文件顺序读写的注意事项 - 在进行文件读写之前,需要确保文件确实存在,且程序有足够的权限对文件进行读写操作。 - 使用文件流进行读写时,应注意文件流的错误状态。例如,在读取完文件后,应检查文件流是否到达文件末尾(failbit)。 - 在写入文件时,如果目标文件不存在,某些open()操作会自动创建文件。如果文件已存在,open()操作则会清空原文件内容,除非使用了追加模式(std::ios::app)。 - 对于大文件的读写,应考虑内存使用情况,避免一次性读取过多数据导致内存溢出。 - 在程序结束前,应该关闭所有打开的文件流。虽然文件流对象的析构函数会自动关闭文件,但显式调用close()是一个好习惯。 ### 常用的文件操作函数 - `open()`:打开文件。 - `close()`:关闭文件。 - `read()`:从文件读取数据到缓冲区。 - `write()`:向文件写入数据。 - `tellg()` 和 `tellp()`:分别返回当前读取位置和写入位置。 - `seekg()` 和 `seekp()`:设置文件流的位置。 ### 总结 在VC++中实现顺序读写操作,是进行文件处理和数据持久化的基础。通过使用C++的标准库中的fstream类,我们可以方便地进行文件读写操作。掌握文件顺序读写不仅可以帮助我们在实际开发中处理数据文件,还可以加深我们对C++语言和文件I/O操作的理解。需要注意的是,在进行文件操作时,合理管理和异常处理是非常重要的,这有助于确保程序的健壮性和数据的安全。
recommend-type

【大数据时代必备:Hadoop框架深度解析】:掌握核心组件,开启数据科学之旅

![【大数据时代必备:Hadoop框架深度解析】:掌握核心组件,开启数据科学之旅](https://media.licdn.com/dms/image/C4E12AQGM8ZXs7WruGA/article-cover_image-shrink_600_2000/0/1601775240690?e=2147483647&v=beta&t=9j23mUG6vOHnuI7voc6kzoWy5mGsMjHvqq5ZboqBjjo) # 摘要 Hadoop作为一个开源的分布式存储和计算框架,在大数据处理领域发挥着举足轻重的作用。本文首先对Hadoop进行了概述,并介绍了其生态系统中的核心组件。深入分
recommend-type

opencv的demo程序

### OpenCV 示例程序 #### 图像读取与显示 下面展示如何使用 Python 接口来加载并显示一张图片: ```python import cv2 # 加载图像 img = cv2.imread('path_to_image.jpg') # 创建窗口用于显示图像 cv2.namedWindow('image', cv2.WINDOW_AUTOSIZE) # 显示图像 cv2.imshow('image', img) # 等待按键事件 cv2.waitKey(0) # 销毁所有创建的窗口 cv2.destroyAllWindows() ``` 这段代码展示了最基本的图
recommend-type

NeuronTransportIGA: 使用IGA进行神经元材料传输模拟

资源摘要信息:"matlab提取文件要素代码-NeuronTransportIGA:该软件包使用等几何分析(IGA)在神经元的复杂几何形状中执行材料传输模拟" 标题中提到的"NeuronTransportIGA"是一个使用等几何分析(Isogeometric Analysis, IGA)技术的软件包,该技术在处理神经元这样复杂的几何形状时进行材料传输模拟。等几何分析是一种新兴的数值分析方法,它利用与计算机辅助设计(CAD)相同的数学模型,从而提高了在仿真中处理复杂几何结构的精确性和效率。 描述中详细介绍了NeuronTransportIGA软件包的使用流程,其中包括网格生成、控制网格文件的创建和仿真工作的执行。具体步骤包括: 1. 网格生成(Matlab):首先,需要使用Matlab代码对神经元骨架进行平滑处理,并生成用于IGA仿真的六面体控制网格。这里所指的“神经元骨架信息”通常以.swc格式存储,它是一种描述神经元三维形态的文件格式。网格生成依赖于一系列参数,这些参数定义在mesh_parameter.txt文件中。 2. 控制网格文件的创建:根据用户设定的参数,生成的控制网格文件是.vtk格式的,通常用于可视化和分析。其中,controlmesh.vtk就是最终生成的六面体控制网格文件。 在使用过程中,用户需要下载相关代码文件,并放置在meshgeneration目录中。接着,使用TreeSmooth.m代码来平滑输入的神经元骨架信息,并生成一个-smooth.swc文件。TreeSmooth.m脚本允许用户在其中设置平滑参数,影响神经元骨架的平滑程度。 接着,使用Hexmesh_main.m代码来基于平滑后的神经元骨架生成六面体网格。Hexmesh_main.m脚本同样需要用户设置网格参数,以及输入/输出路径,以完成网格的生成和分叉精修。 此外,描述中也提到了需要注意的“笔记”,虽然具体笔记内容未给出,但通常这类笔记会涉及到软件包使用中可能遇到的常见问题、优化提示或特殊设置等。 从标签信息“系统开源”可以得知,NeuronTransportIGA是一个开源软件包。开源意味着用户可以自由使用、修改和分发该软件,这对于学术研究和科学计算是非常有益的,因为它促进了研究者之间的协作和知识共享。 最后,压缩包子文件的文件名称列表为"NeuronTransportIGA-master",这表明了这是一个版本控制的源代码包,可能使用了Git版本控制系统,其中"master"通常是指默认的、稳定的代码分支。 通过上述信息,我们可以了解到NeuronTransportIGA软件包不仅仅是一个工具,它还代表了一个研究领域——即使用数值分析方法对神经元中的物质传输进行模拟。该软件包的开发和维护为神经科学、生物物理学和数值工程等多个学科的研究人员提供了宝贵的资源和便利。