tsp遗传算法变异算法代码
时间: 2024-04-06 14:26:41 浏览: 118
TSP(Traveling Salesman Problem,旅行商问题)是一个经典的组合优化问题,遗传算法是一种常用的解决TSP问题的方法之一。下面是一个简单的TSP遗传算法变异算法的代码示例:
```python
import random
# 初始化种群
def init_population(num_cities, population_size):
population = []
for _ in range(population_size):
individual = list(range(num_cities))
random.shuffle(individual)
population.append(individual)
return population
# 计算路径长度
def calculate_distance(city1, city2):
# 计算城市之间的距离,这里可以根据实际情况进行修改
return distance
def calculate_fitness(individual):
total_distance = 0
for i in range(len(individual)):
city1 = individual[i]
city2 = individual[(i + 1) % len(individual)]
total_distance += calculate_distance(city1, city2)
return 1 / total_distance
# 选择操作
def selection(population, num_parents):
parents = []
fitness_values = [calculate_fitness(individual) for individual in population]
for _ in range(num_parents):
max_fitness_index = fitness_values.index(max(fitness_values))
parents.append(population[max_fitness_index])
fitness_values[max_fitness_index] = -1
return parents
# 变异操作
def mutation(individual):
# 随机选择两个位置进行交换
index1 = random.randint(0, len(individual) - 1)
index2 = random.randint(0, len(individual) - 1)
individual[index1], individual[index2] = individual[index2], individual[index1]
return individual
# 主函数
def tsp_ga(num_cities, population_size, num_generations):
population = init_population(num_cities, population_size)
for _ in range(num_generations):
parents = selection(population, num_parents=2)
offspring = [mutation(parent) for parent in parents]
population = parents + offspring
best_individual = max(population, key=calculate_fitness)
best_distance = 1 / calculate_fitness(best_individual)
return best_individual, best_distance
# 示例调用
num_cities = 10
population_size = 100
num_generations = 1000
best_individual, best_distance = tsp_ga(num_cities, population_size, num_generations)
print("Best individual:", best_individual)
print("Best distance:", best_distance)
```
这段代码实现了一个简单的TSP遗传算法变异算法。其中,`init_population`函数用于初始化种群,`calculate_distance`函数用于计算城市之间的距离,`calculate_fitness`函数用于计算个体的适应度,`selection`函数用于选择操作,`mutation`函数用于变异操作,`tsp_ga`函数是主函数,用于执行遗传算法的迭代过程。
阅读全文