"1","2013-07-25 00:00:00","11599","CLOSED" "2","2013-07-25 00:00:00","256","PENDING_PAYMENT"这是我csv的前两条数据,帮我再spark中创建一个case类
时间: 2023-08-15 22:04:13 浏览: 188
根据你提供的前两条数据,你可以创建一个对应的case类如下:
```scalacase class Order(
orderId: String,
orderDate: String,
customerId: String,
status: String)
```
然后,你可以使用Spark的`toDS()`方法将DataFrame转换为Dataset,指定case类作为泛型参数。示例代码如下:
```scalaimport spark.implicits._
val data = Seq(
("1","2013-07-2500:00:00","11599","CLOSED"),
("2","2013-07-2500:00:00","256","PENDING_PAYMENT")
)
val df = data.toDF("orderId", "orderDate", "customerId", "status")
val dataset = df.as[Order]
```
现在,你可以使用`dataset`来操作和处理CSV文件中的数据,而且可以通过访问`dataset`中的属性来访问每个订单的具体字段。
阅读全文