写一份有关 基于机器学习与真实体检数据的糖尿病预测python代码以及具体的训练模型,数据集特征有:性别、年龄、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇、极低密度脂蛋白胆固醇、甘油三酯、总胆固醇、脉搏、舒张压、高血压史、尿素氮、尿酸、体重检查结果和是否糖尿病
时间: 2023-09-04 13:07:30 浏览: 107
下面是一个基于机器学习和真实体检数据的糖尿病预测的Python代码示例。我们将使用随机森林算法进行建模。请注意,这只是一个示例代码,你可能需要根据你的数据集和需求进行适当的调整和改进。
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 读取数据集
data = pd.read_csv('your_dataset.csv')
# 特征选择
features = ['性别', '年龄', '高密度脂蛋白胆固醇', '低密度脂蛋白胆固醇', '极低密度脂蛋白胆固醇', '甘油三酯', '总胆固醇', '脉搏', '舒张压', '高血压史', '尿素氮', '尿酸', '体重检查结果']
target = '是否糖尿病'
X = data[features]
y = data[target]
# 数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = RandomForestClassifier()
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("模型准确率:", accuracy)
```
在这个示例代码中,我们首先加载数据集并选择需要的特征和目标变量。然后,我们将数据集划分为训练集和测试集,按照80%的比例进行划分。接下来,我们使用随机森林算法创建模型,并使用训练集对模型进行训练。最后,我们使用测试集对模型进行预测,并计算模型的准确率。
请根据你的数据集和需求适当调整代码中的特征、目标变量、模型和参数等部分。
阅读全文