apap算法python代码
时间: 2023-09-13 13:00:59 浏览: 241
APAP (Adaptive Peculiarity Algorithm for Python) 是一种用于异常检测的算法。它的核心思想是在数据中寻找不寻常的模式,以检测和识别异常值。
下面是一个简单的 APAP 算法的 Python 代码示例:
```python
import numpy as np
def calculate_distance(x, y):
return np.linalg.norm(x - y)
def calculate_density(data, point, epsilon):
density = 0
for other_point in data:
distance = calculate_distance(point, other_point)
if distance <= epsilon:
density += 1
return density
def calculate_neighbor(data, point, epsilon):
neighbors = []
for other_point in data:
distance = calculate_distance(point, other_point)
if distance <= epsilon:
neighbors.append(other_point)
return neighbors
def apap(data, epsilon, min_density):
anomalies = []
for point in data:
density = calculate_density(data, point, epsilon)
if density < min_density:
neighbors = calculate_neighbor(data, point, epsilon)
average_distance = 0
for neighbor in neighbors:
average_distance += calculate_distance(point, neighbor)
average_distance /= len(neighbors)
if average_distance > 2 * epsilon:
anomalies.append(point)
return anomalies
# 示例用法
data = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])
epsilon = 1.0
min_density = 2
result = apap(data, epsilon, min_density)
print(result)
```
上述代码首先定义了计算两点之间距离的函数 `calculate_distance`,然后定义了计算给定点的密度的函数 `calculate_density` 和计算给定点的邻居的函数 `calculate_neighbor`。接下来,`apap` 函数将遍历给定数据集中的每个点,计算其密度,如果密度小于指定的最小密度阈值,则计算其邻居的平均距离,如果该平均距离大于两倍的 epsilon,则将该点判定为异常值。最后,返回所有的异常值。
在示例用法中,传入给定的数据集 `[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]`,设置 epsilon 为 1.0,最小密度为 2,然后调用 `apap` 函数进行异常检测,最后将结果打印出来。
阅读全文