pytorch验证集
时间: 2023-10-18 11:26:57 浏览: 98
在Pytorch中,验证集的使用是为了评估训练模型在未见过的数据上的性能。一般来说,我们需要从给定的数据集中划分出一个独立的验证集来进行验证。常用的验证集划分方法有三种:留出法(Hold-out)、K折交叉验证(K-fold Cross Validation)和自助采样(Bootstrap)。
留出法是将训练集按照一定的比例划分成两部分,一部分作为训练集,另一部分作为验证集。常见的划分比例是7:3或8:2。这种方法比较简单,但是可能会导致一部分数据无法用于训练。
K折交叉验证将训练集划分为K份,其中K-1份作为训练集,剩下的一份作为验证集,然后循环K次,每次使用不同的验证集进行训练和验证。这种方法可以更充分地利用数据,但是会增加计算量。
自助采样是通过有放回地采样方式得到新的训练集和验证集,这样每次的训练集和验证集都是有区别的。这种方法适用于小数据集,但是会引入一定的重复样本。
在验证的过程中,通常会使用验证函数来评估模型在验证集上的性能。这个函数会对每个输入数据进行预测,计算损失,并返回平均损失。在Pytorch中,可以通过设置模型为eval模式和使用torch.no_grad()来关闭梯度计算来进行验证。
最后,为了保存训练得到的最佳模型,可以使用torch.save()函数将模型的参数保存到文件中。这样可以方便后续的模型加载和使用。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [Task4:Pytorch实现模型训练与验证](https://blog.csdn.net/m0_37833142/article/details/106447751)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文