c++实现遗传算法旅行商问题
时间: 2024-12-31 16:31:47 浏览: 18
### C++ 实现遗传算法解决旅行商问题
#### 定义城市类
为了表示各个城市的位置以及计算两个城市之间的距离,定义 `City` 类。
```cpp
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
class City {
public:
int x;
int y;
City(int x, int y) : x(x), y(y) {}
double distanceTo(const City& city) const {
int xDist = abs(city.x - this->x);
int yDist = abs(city.y - this->y);
return std::sqrt((xDist * xDist) + (yDist * yDist));
}
};
```
此部分代码创建了一个简单的 `City` 对象来存储城市的坐标并提供方法用于计算两座城市间的欧几里得距离[^1]。
#### 初始化种群
初始化随机生成的城市列表作为初始种群的一部分。这一步骤对于后续的选择、交叉和变异操作至关重要。
```cpp
std::vector<City> generateCities(int numCities) {
std::vector<City> cities;
static std::default_random_engine generator(time(0));
static std::uniform_int_distribution<int> distributionX(0, 200); // 城市 X 范围
static std::uniform_int_distribution<int> distributionY(0, 200); // 城市 Y 范围
for (int i = 0; i < numCities; ++i) {
cities.emplace_back(distributionX(generator), distributionY(generator));
}
return cities;
}
```
这段代码实现了城市坐标的随机化分配,并返回一个由这些城市组成的向量。
#### 计算路径长度
编写函数以评估给定路线的总行程长度,这对于选择适应度较高的个体非常重要。
```cpp
double calculateRouteDistance(const std::vector<int>& route, const std::vector<City>& cities) {
double totalDistance = 0.0;
for (size_t i = 0; i < route.size() - 1; ++i) {
totalDistance += cities[route[i]].distanceTo(cities[route[i + 1]]);
}
totalDistance += cities[route.back()].distanceTo(cities[route.front()]);
return totalDistance;
}
```
该函数接收一条完整的访问顺序(即染色体),并通过调用之前定义的距离测量方法累加每一对相邻节点间距离得出整条环路的总里程数。
#### 遗传算法核心逻辑
下面展示的是整个遗传过程的核心框架:
```cpp
void evolvePopulation(std::vector<std::pair<double, std::vector<int>>>& population,
const std::vector<City>& cities,
size_t eliteSize=2, float mutationRate=0.01f) {
auto sortPopByFitness = [](auto& lhs, auto& rhs){return lhs.first < rhs.first;};
std::sort(population.begin(), population.end(), sortPopByFitness);
// Select elites directly into new generation.
std::vector<std::pair<double, std::vector<int>>> nextGeneration;
for(size_t i = 0; i < eliteSize && i < population.size(); ++i){
nextGeneration.push_back(population[i]);
}
while(nextGeneration.size() < population.size()){
// Randomly select two parents based on fitness proportionate selection...
// Perform crossover between selected parent chromosomes...
// Apply mutations with given probability...
// Add offspring to the next generation after evaluating its fitness value...
}
population.swap(nextGeneration);
}
// Note: The actual implementation details like selecting parents via roulette wheel method,
// performing ordered crossovers, applying swap mutations etc., have been omitted here due to brevity constraints.
```
上述伪代码展示了如何通过迭代改进当前群体中的解集直到满足终止条件为止的过程概述。实际应用中还需要补充具体的父代选取策略、交配方式及突变机制等内容[^2]。
阅读全文