对抗生成神经网络代码
时间: 2024-02-22 12:52:56 浏览: 79
生成对抗网络的项目代码
以下是一个简单的对抗生成神经网络(GAN)的代码示例:
```python
import torch
import torch.nn as nn
# 定义生成器网络
class Generator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
x = self.sigmoid(x)
return x
# 定义鉴别器网络
class Discriminator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
x = self.sigmoid(x)
return x
# 定义GAN模型
class GAN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(GAN, self).__init__()
self.generator = Generator(input_size, hidden_size, output_size)
self.discriminator = Discriminator(output_size, hidden_size, 1)
def forward(self, x):
generated_data = self.generator(x)
output = self.discriminator(generated_data)
return generated_data, output
# 创建GAN模型实例
input_size = 100
hidden_size = 128
output_size = 784
gan = GAN(input_size, hidden_size, output_size)
# 打印模型结构
print(gan)
```
这段代码定义了一个简单的GAN模型,包括生成器网络和鉴别器网络。生成器网络将一个随机噪声向量作为输入,并生成一个与数据集相似的样本。鉴别器网络接收生成器生成的样本或真实数据,并输出一个介于0和1之间的标量,表示样本是真实的还是生成的。GAN模型将生成器和鉴别器组合在一起,并通过训练使生成器生成更逼真的样本,同时鉴别器能够更准确地区分真实样本和生成样本。
阅读全文