r.to_excel(outputfile)
时间: 2024-10-24 07:17:04 浏览: 29
在R语言中,`to_excel()`函数主要用于将数据框(data frame)或者其他可以转化为矩阵的对象转换成Microsoft Excel (.xlsx)格式的电子表格文件。这个函数通常用于`readr`或`write.xlsx`包,它们分别负责快速读取CSV等文件和写入Excel文件。
如果你使用的是`readr`包并且已经读取了数据,例如:
```r
library(readr)
data <- read_csv("input.csv") # 从CSV读取数据到data变量
```
你可以这样做来保存数据到Excel文件:
```r
data %>% write_excel(outputfile = "output.xlsx")
```
这里,`%>%`是管道操作符,它将前一个表达式的结果传递给后一个函数,`write_excel`就是将数据写入Excel文件的操作。
如果你使用的是`write.xlsx`包,语法可能会稍微有所不同:
```r
library(write.xlsx)
write.xlsx(data, file = "output.xlsx", row.names = FALSE) # 设置row.names参数控制是否包含行索引
```
相关问题
import pandas as pd #地方财政收入神经网络预测模型 inputfile='../tmp/new_reg_data_GM11.xls' outputfile='../tmp/new_reg_data_GM11_revenue.xls' modelfile='../tmp/1-net.model' data=pd.read_excel(inputfile) feature=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10','x11','x13']#特征所在列 data_train=data.loc[range(1994,2014)].copy()#取2014年前的建模数据 data_mean=data_train.mean() data_std=data_train.std() data_train=(data_train-data_mean)/data_std#数据标准化 x_train=data_train[feature].as_matrix()#特征数据 y_train=data_train['y'].as_matrix()#标签数据 from keras.models import Sequential from keras.layers.core import Dense,Activation model=Sequential()#建立模型 model.add(Dense(input_dim=12,output_dim=12)) model.add(Activation('relu'))#激活函数 model.add(Dense(input_dim=12,output_dim=1)) model.compile(loss='mean_squared_error',optimizer='adam')#编译模型,目标函数是均方差 model.fit(x_train,y_train,nb_epoch=10000,batch_size=16)#训练模型 model.save_weights(modelfile)#保存模型 #预测并还原结果 x=((data[feature]-data_mean[feature])/data_std[feature]).as_matrix() data[u'y_pred'] = model.predict(x) * data_std['y'] + data_mean['y'] data.to_excel(outputfile) #画出预测图 import matplotlib.pyplot as plt p=data[['y','y_pred']].plot(subplots=True,style=['b-o','r-*']) plt.show()
这段代码是一个使用神经网络模型进行地方财政收入预测的例子。首先从Excel文件中读入数据,并选取其中的特征列和标签列构成训练数据,然后对训练数据进行标准化处理。接着使用Keras建立神经网络模型,包括输入层、隐藏层和输出层,其中隐藏层使用了ReLU激活函数。然后对模型进行编译,使用均方差作为目标函数,使用Adam优化器进行训练。训练完成后,将模型保存到文件中。最后对所有数据进行预测,并将预测结果还原到原始数据范围内,将预测结果写入Excel文件中,并画出预测图。
需要注意的是,这段代码中的一些函数已经过时,例如`as_matrix()`和`nb_epoch`,建议使用更新的函数代替。同时,这段代码并没有对模型进行评估,可以考虑增加评估的步骤。
from sklearn.svm import LinearSVR import matplotlib.pyplot as plt data = pd.read_excel('../tmp/new_reg_data_GM11.xls') # 读取数据 data = data.set_index('Unnamed: 0') data = data.drop(index ='模型精度') feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] #特征所在列 data_train = data.loc[range(1994, 2014)].copy() #取2014年前的数据建模 data_mean = data_train.mean() data_std = data_train.std() data_train = (data_train - data_mean) / data_std #数据标准化 x_train = data_train[feature].as_matrix() #特征数据 y_train = data_train['y'].as_matrix() #标签数据 linearsvr = LinearSVR(random_state=123) #调用LinearSVR()函数 linearsvr.fit(x_train, y_train) #预测2014 年和2015 年的财政收入,并还原结果 x = ((data[feature] - data_mean[feature]) / data std[feature]).as_matrix() data[u'y_pred'] = linearsvr.predict (x) * data_std['y'] + data_mean['y'] outputfile ='../tmp/new_reg_data_GM11_revenue.xls' data.to_excel(outputfile) print('真实值与预测值分别为: \n', data[['y', 'y_pred']]) print('预测图为: ',data[['y','y_pred']].plot(style = ['b-o','r-*'])) #画出预测结果图 plt.xlabel('年份') plt.xticks(range(1994,2015,2))
这段代码是使用线性支持向量回归(LinearSVR)进行财政收入预测的示例。首先,代码导入了所需的库,包括sklearn.svm中的LinearSVR和matplotlib.pyplot。然后,通过pd.read_excel方法读取了名为'../tmp/new_reg_data_GM11.xls'的Excel文件,并将数据设置为以'Unnamed: 0'列为索引。接下来,选择了特定的特征列,并将数据划分为训练集和测试集。然后,对训练集进行了数据标准化操作,并将特征数据和标签数据分别保存在x_train和y_train中。接着,创建了一个LinearSVR对象,并使用训练数据进行拟合。然后,对2014年和2015年的财政收入进行预测,并将结果还原至原始数据范围内。最后,将预测结果保存至Excel文件'../tmp/new_reg_data_GM11_revenue.xls',并打印出真实值和预测值。同时,代码还画出了真实值和预测值的图表,并设置了横坐标的刻度。
阅读全文