将单片机内部RAM的20H~2FH共16个单元全部置1
时间: 2024-10-09 12:01:13 浏览: 84
在许多单片机系统中,内部RAM(Random Access Memory)通常包含连续的存储空间。为了将20H到2FH这16个地址范围内的内容全部置1,可以使用一个循环结构,遍历每个地址并写入1。下面是一个简单的示例,假设我们使用的是AT89S52这类具有8位数据宽度的单片机,其中每个字节有8位,总共16位的空间。
```c
#include <reg52.h> // 假设这是对单片机寄存器的宏定义
void setAllToOne() {
unsigned char addr = 0x20; // 遍历开始地址
for (unsigned char i = 0; i <= 15; i++) { // 循环16次,每次i加1覆盖一个字节
*(__sfr__(addr)) |= 0xFF; // 对应地址处的字节全1
addr++; // 地址递增
}
}
// 调用该函数来执行操作
setAllToOne();
```
在这个例子中,`*(__sfr__(addr))`是一个通用的宏,用于访问指定地址的内存单元。`|= 0xFF`是按位或运算符,相当于把0xFF(二进制全1)与当前的内存值进行或操作,实现了置1的操作。
相关问题
在STC32G中将单片机内部RAM的20H~2FH共16个单元全部置1,要求采用循环结构编写程序,并在keil中进行仿真并提交程序代码和仿真结果截图。
在STC32G单片机中,为了将内部RAM的20H到2FH这16个地址位置全部置1,我们可以使用for循环和位操作指令如SETB(置位)来实现。这里提供一个基本的C语言程序示例,假设我们使用的是Keil uVision集成开发环境:
```c
#include <REGX32.H> //包含STC32G的头文件
void SetAllRAMtoOne(void) {
for (unsigned char i = 0x20; i <= 0x2F; ++i) { //从20H开始循环到2FH
*(__IO uint8_t *)(i) |= 0xFF; //对每个字节进行全置位
}
}
int main(void) {
// 其他主函数初始化和处理部分...
SetAllRAMtoOne(); // 调用函数置位内存
// 程序在这里可以添加一些必要的延时或者其他操作,然后结束
return 0;
}
// 在Keil中,你需要编译这个程序并下载到板子上进行验证
// 确认所有内存单元都被设置为1,你可以通过内存查看工具检查这部分区域。
6.12 已知AT89C51单片机的晶振频率为f_{osc}=12MHz,串行口工作在方式3,要求通信波特率为4800bps,并采用偶校验方式,用汇编语言和C51分别采用查询方式和中断方式编程实现把甲机内部RAM 20H~2FH 单元的数据块通过串行口传送到乙机的20H~2FH单元。
好的,我明白了。根据你的要求,我会提供查询方式和中断方式的汇编语言和C语言代码,实现将甲机内部RAM 20H~2FH 单元的数据块通过串行口传送到乙机的20H~2FH单元,并采用偶校验方式。
首先,我们需要设置串行口的波特率分频器的值为77,以实现4800bps的通信速率,并使用偶校验方式。以下是查询方式和中断方式的汇编语言和C语言代码:
查询方式的汇编语言代码:
```
; 设置波特率分频器的值为77
MOV TH1, #77H
; 设置串行口为方式3,偶校验
MOV SCON, #50H
; 将甲机内部RAM 20H~2FH单元的数据块发送到乙机的20H~2FH单元
MOV DPTR, #20H ; 设置数据块的起始地址
MOV R0, #0FH ; 设置数据块的长度
SEND_LOOP:
MOV A, @DPTR ; 读取当前地址的数据
MOV SBUF, A ; 将数据发送到串行口
WAIT_SEND:
JNB TI, WAIT_SEND ; 等待数据发送完成
CLR TI ; 清除发送完成标志
MOV A, SBUF ; 读取串行口接收到的数据
MOV @DPTR, A ; 将数据存储到乙机的内部RAM
WAIT_RECV:
JNB RI, WAIT_RECV ; 等待数据接收完成
CLR RI ; 清除接收完成标志
INC DPTR ; 指向下一个地址
DJNZ R0, SEND_LOOP ; 继续发送下一个数据
```
查询方式的C语言代码:
```c
#include <reg51.h>
#define BAUDRATE 4800
#define PRESCALER 32
#define TH1VALUE 77
void init_serial()
{
TMOD &= 0x0F; // 清除定时器1的模式控制位
TMOD |= 0x20; // 设置定时器1为8位自动重载模式
SCON = 0x50; // 设置串行口为方式3,偶校验
TH1 = TH1VALUE; // 设置波特率分频器的值
TL1 = TH1VALUE; // 重置定时器1的计数器
TR1 = 1; // 启动定时器1
}
void send_data()
{
unsigned char *data_ptr = 0x20; // 数据块的起始地址
unsigned char data_len = 0x0F; // 数据块的长度
unsigned char i;
for (i = 0; i < data_len; i++) {
SBUF = *data_ptr; // 发送数据
while (!TI); // 等待发送完成
TI = 0; // 清除发送完成标志
*data_ptr = SBUF; // 接收数据
while (!RI); // 等待接收完成
RI = 0; // 清除接收完成标志
data_ptr++; // 指向下一个地址
}
}
void main()
{
init_serial(); // 初始化串行口
send_data(); // 发送数据
}
```
中断方式的汇编语言代码:
```
; 定义数据缓冲区
DATA_BUFFER: DS 16
; 设置波特率分频器的值为77
MOV TH1, #77H
; 设置串行口为方式3,偶校验
MOV SCON, #50H
; 将甲机内部RAM 20H~2FH单元的数据块发送到乙机的20H~2FH单元
MOV DPTR, #20H ; 设置数据块的起始地址
MOV R0, #0FH ; 设置数据块的长度
MOV R1, #0 ; 初始化数据缓冲区的指针
SEND_LOOP:
MOV A, @DPTR ; 读取当前地址的数据
MOV R2, A ; 备份数据
MOV DATA_BUFFER + R1, A ; 存储数据到缓冲区
INC R1 ; 缓冲区指针加1
MOV SBUF, A ; 将数据发送到串行口
WAIT_SEND:
JNB TI, WAIT_SEND ; 等待数据发送完成
CLR TI ; 清除发送完成标志
INC DPTR ; 指向下一个地址
DJNZ R0, SEND_LOOP ; 继续发送下一个数据
; 中断服务程序:接收数据
RECV_ISR:
MOV A, SBUF ; 读取串行口接收到的数据
MOV DATA_BUFFER + R1, A ; 存储数据到缓冲区
INC R1 ; 缓冲区指针加1
CLR RI ; 清除接收完成标志
RETI ; 结束中断服务程序
```
中断方式的C语言代码:
```c
#include <reg51.h>
#define BAUDRATE 4800
#define PRESCALER 32
#define TH1VALUE 77
unsigned char data_buffer[16]; // 定义数据缓冲区
unsigned char data_ptr = 0; // 数据缓冲区指针
unsigned char data_len = 0x0F; // 数据块的长度
void init_serial()
{
TMOD &= 0x0F; // 清除定时器1的模式控制位
TMOD |= 0x20; // 设置定时器1为8位自动重载模式
SCON = 0x50; // 设置串行口为方式3,偶校验
TH1 = TH1VALUE; // 设置波特率分频器的值
TL1 = TH1VALUE; // 重置定时器1的计数器
TR1 = 1; // 启动定时器1
ES = 1; // 启用串行口中断
EA = 1; // 启用全局中断
}
void send_data()
{
unsigned char *data_ptr = 0x20; // 数据块的起始地址
unsigned char i;
for (i = 0; i < data_len; i++) {
data_buffer[i] = *data_ptr; // 存储数据到缓冲区
SBUF = *data_ptr; // 发送数据
while (!TI); // 等待发送完成
TI = 0; // 清除发送完成标志
data_ptr++; // 指向下一个地址
}
}
void main()
{
init_serial(); // 初始化串行口
send_data(); // 发送数据
}
void serial_isr() interrupt 4
{
data_buffer[data_ptr] = SBUF; // 存储数据到缓冲区
data_ptr++; // 缓冲区指针加1
RI = 0; // 清除接收完成标志
}
```
以上就是查询方式和中断方式的汇编语言和C语言代码,实现将甲机内部RAM 20H~2FH 单元的数据块通过串行口传送到乙机的20H~2FH单元,并采用偶校验方式。希望能够帮助到你。
阅读全文