组内相关系数ICC python
时间: 2023-11-17 21:02:33 浏览: 212
组内相关系数ICC是衡量和评价观察者间信度和复测信度的信度系数指标之一。在Python中,有多种方法可以实现ICC的计算,包括使用rpy2包、pingouin库和psych包等。其中,rpy2包可以从Python中使用R语言的函数,pingouin库提供了6种不同的ICC计算方法,而psych包则可以计算多种类型的ICC变体。以下是使用这三种方法计算ICC的示例代码:
使用rpy2包:
```python
from rpy2.robjects import DataFrame, FloatVector, IntVector
from rpy2.robjects.packages import importr
from math import isclose
# 安装并导入psych包和lme4包
psych = importr("psych")
lme4 = importr("lme4")
# 准备数据
values = [[9, 2, 5, 8], [6, 1, 3, 2], [8, 4, 6, 8], [7, 1, 2, 6], [10, 5, 6, 9], [6, 2, 4, 7]]
df = DataFrame({'values': FloatVector([item for sublist in values for item in sublist]),
'rater': IntVector([i+1 for i in range(len(values))]*4),
'target': IntVector([j+1 for j in range(4)]*len(values))})
# 计算ICC
icc = psych.ICC(df, "twoway", "agreement", 2)
print("ICC值为:", icc[0][0])
```
使用pingouin库:
```python
import pingouin as pg
# 准备数据
data = pg.read_dataset('icc')
# 计算ICC
icc = pg.intraclass_corr(data=data, targets='Wine', raters='Judge', ratings='Scores', nan_policy='omit')
print("ICC值为:", icc['ICC'][0])
```
使用psych包:
```python
import rpy2
from rpy2.robjects import IntVector, pandas2ri
from rpy2.robjects.packages import importr
# 安装并导入psych包
psych = importr("psych")
# 准备数据
values = rpy2.robjects.r.matrix(IntVector([9, 2, 5, 8, 6, 1, 3, 2, 8, 4, 6, 8, 7, 1, 2, 6, 10, 5, 6, 9, 6, 2, 4, 7]), ncol=4, byrow=True)
# 计算ICC
icc = psych.ICC(values)
# 转换为Pandas DataFrame
icc_df = pandas2ri.rpy2py(icc[0])
print("ICC值为:", icc_df['value'][0])
```
阅读全文