多目标灰色预测模型matlab代码
时间: 2023-11-25 15:36:48 浏览: 114
请问您需要的是多目标灰色预测模型的 MATLAB 代码,对吗?如果是的话,以下是一个简单的多目标灰色预测模型的 MATLAB 实现示例:
```matlab
% 多目标灰色预测模型
function [y_hat, y_real] = multi_grey_prediction(X, Y)
% 输入参数:
% X: 输入数据矩阵,每一行为一个样本,每一列为一个特征
% Y: 输出数据矩阵,每一行为一个样本,每一列为一个目标变量
% 灰色关联度分析
[~, n] = size(X); % 特征数
[~, m] = size(Y); % 目标变量数
for i = 1:m
for j = 1:n
R(i, j) = corr(X(:, j), Y(:, i)); % 计算相关系数矩阵
end
end
% 灰色预测模型构建与预测
for i = 1:m
X_hat = X; % 初始化预测矩阵
Y_hat(:, i) = grey_model(X(:, i), Y(:, i), X_hat(:, i)); % 灰色预测模型求解
end
% 输出结果
y_hat = Y_hat; % 预测结果
y_real = Y; % 真实值
end
% 灰色预测模型求解函数
function Y_hat = grey_model(X, Y, X_hat)
% 输入参数:
% X: 输入数据,一维向量
% Y: 输出数据,一维向量
% X_hat: 待预测数据,一维向量
n = length(X); % 数据长度
m = length(X_hat); % 待预测数据长度
% 累加生成序列
for i = 2:n
X_accumulate(i) = X(i-1) + X_accumulate(i-1);
Y_accumulate(i) = Y(i-1) + Y_accumulate(i-1);
end
% 级比累加生成序列
for i = 2:n
X_ratio_accumulate(i) = X_accumulate(i) / X_accumulate(n);
Y_ratio_accumulate(i) = Y_accumulate(i) / Y_accumulate(n);
end
% 灰色预测模型求解
for i = 2:m+1
Y_hat(1) = Y(1);
Y_hat(i) = (Y(1) - (1 - X_ratio_accumulate(n)) * (X_hat(i-1)-X(n))) / X_ratio_accumulate(i-1);
end
end
```
上述代码实现了一个简单的多目标灰色预测模型,其中 `X` 是输入数据矩阵,每一行为一个样本,每一列为一个特征;`Y` 是输出数据矩阵,每一行为一个样本,每一列为一个目标变量。函数 `multi_grey_prediction` 实现了灰色关联度分析和灰色预测模型构建与预测,函数 `grey_model` 实现了灰色预测模型的求解。最后,函数返回预测结果 `y_hat` 和真实值 `y_real`。
请注意,这只是一个简单的示例代码,具体的多目标灰色预测模型的实现可能会根据具体的问题和需求而有所不同。希望对您有所帮助!
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![application/x-zip](https://img-home.csdnimg.cn/images/20210720083736.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)