从视频中收集观测点车流量车速密度的代码
时间: 2024-09-21 10:05:59 浏览: 83
视频中收集观测点的车流量、车速和密度通常涉及视频分析和计算机视觉技术。以下是一个简化的Python代码示例,使用OpenCV库处理这个问题,假设我们已经有了标注车辆位置和运动数据的视频流:
```python
import cv2
import numpy as np
# 初始化变量
prev_frame = None
vehicle_positions = []
current_density = {}
def process_video(frame):
# 分割车辆区域 (这里假设已经通过预处理得到)
vehicle_masks = detect_vehicles(frame)
# 更新车辆位置
for mask in vehicle_masks:
if prev_frame is not None:
x, y, w, h = cv2.boundingRect(mask)
displacement = calculate_displacement(prev_frame, mask)
vehicle_positions.append((x, y, w, h, displacement))
# 计算当前帧密度
current_frame_area = frame.shape[0] * frame.shape[1]
for position in vehicle_positions:
density_key = tuple(position[:4])
current_density[density_key] = current_density.get(density_key, 0) + 1 / (w*h)
prev_frame = frame.copy()
# 这里是辅助函数
def detect_vehicles(frame):
# 使用YOLO或其他目标检测模型获取车辆位置
vehicles = yolov3.detect(frame)
return vehicles
def calculate_displacement(prev_frame, mask):
# 通过对比两帧计算车辆位移
difference = cv2.absdiff(prev_frame, mask)
_, contours, _ = cv2.findContours(difference, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 取最大轮廓作为位移估计
contour = max(contours, key=cv2.contourArea)
moments = cv2.moments(contour)
return moments['m00'] if moments else 0
# ... 现在你可以创建一个VideoCapture实例并调用process_video()函数
cap = cv2.VideoCapture('your_video.mp4')
while cap.isOpened():
ret, frame = cap.read()
if ret:
process_video(frame)
else:
break
# 结果存储或可视化
for position, density in current_density.items():
print(f"观测点({position}) 车辆密度: {density}")
```
阅读全文