这个类有什么用class CFrameModbusRtu:public CFrameModbus { public: CFrameModbusRtu(); CFrameModbusRtu( const CFrameModbusRtu& frame ); ~CFrameModbusRtu(); virtual const int GetMaxFrmLength()const; virtual const int GetMinFrmLength()const; virtual const int IsValidFrame(const uint8 *buf, const int BufLen) const; CFrameModbusRtu& operator=( const CFrameModbusRtu& frame ); const uint8& address()const; uint8& address(); virtual const int encode( uint8* buffer,const int size ) const; virtual const int decode( const uint8* buffer,const int size ); virtual int reply( const CFrameModbus* frame ); void SetAddress(uint8 addr){m_address = addr;}; int m_check_type; //ztn 20161019 add private: uint8 m_address; //uint8 };

时间: 2024-04-14 22:32:16 浏览: 16
这个类名为`CFrameModbusRtu`,是从`CFrameModbus`类继承而来的。它有一些成员函数和成员变量,用于实现Modbus RTU协议的帧处理。 这个类的作用是实现了Modbus RTU协议的帧处理功能。它包含了一些常用的函数,例如获取最大帧长度、最小帧长度、判断帧是否有效等。它还重载了赋值运算符,用于将一个帧赋值给另一个帧。 此外,类中还包含了一个私有成员变量`m_address`,用于存储Modbus设备的地址。该类还提供了设置设备地址的函数`SetAddress`。 需要注意的是,这段代码中还有一行注释掉的代码`//ztn 20161019 add`,具体作用不清楚。
相关问题

这个类有什么用class CFrameModbusPdu; class CFrameModbus:public CFrame { public: CFrameModbus(); CFrameModbus( const CFrameModbus& frame ); ~CFrameModbus(); virtual void init(void){m_pdu.init();}; virtual const int GetMaxFrmLength() const; virtual const int GetMinFrmLength() const; virtual const int IsValidFrame(const uint8 *buf, const int BufLen) const; virtual CFrameModbus& operator=( const CFrame& frame ); virtual CFrameModbus& operator=( const CFrameModbus& frame ); CFrameModbusPdu& pdu(); const CFrameModbusPdu& pdu()const; virtual int reply( const CFrameModbus* frame ) = 0; virtual void SetAddress(uint8 addr){}; private: CFrameModbusPdu m_pdu; };

这段代码定义了两个类,分别是`CFrameModbus`和`CFrameModbusPdu`。 `CFrameModbus`类继承自`CFrame`类,并包含了一个`CFrameModbusPdu`对象作为私有成员变量。它提供了一些函数,如初始化函数`init()`,获取最大帧长度和最小帧长度的函数等。它还重载了赋值运算符,用于将一个帧赋值给另一个帧。 此外,`CFrameModbus`类还定义了一个抽象的回复函数`reply()`,该函数接受一个`CFrameModbus`类型的指针作为参数。 `CFrameModbusPdu`类没有给出具体的定义,但可以推测它是与Modbus协议PDU(Protocol Data Unit)相关的类。在`CFrameModbus`类中,通过成员函数`pdu()`和`const pdu()`可以获取和设置PDU对象。 需要注意的是,`CFrameModbus`类中的虚函数`SetAddress()`没有具体实现,可能是为了在派生类中根据具体需求进行实现。

该代码作用#ifndef _MODBUS_C_FRAME_MODBUS_RTU_H #define _MODBUS_C_FRAME_MODBUS_RTU_H #include "framemodbus.h" //============= Check Type =============== #define CHECK_CRC_LOWAHEAD 0 //CRC Low Byte Ahead(default) #define CHECK_CRC_HIAHEAD 1 //CRC High Byte Ahead #define CHECK_LRC 2 //LRC #define CHECK_SUM 3 //Sum //ztn 20161019 add class CFrameModbusRtu:public CFrameModbus { public: CFrameModbusRtu(); CFrameModbusRtu( const CFrameModbusRtu& frame ); ~CFrameModbusRtu(); virtual const int GetMaxFrmLength()const; virtual const int GetMinFrmLength()const; virtual const int IsValidFrame(const uint8 *buf, const int BufLen) const; CFrameModbusRtu& operator=( const CFrameModbusRtu& frame ); const uint8& address()const; uint8& address(); virtual const int encode( uint8* buffer,const int size ) const; virtual const int decode( const uint8* buffer,const int size ); virtual int reply( const CFrameModbus* frame ); void SetAddress(uint8 addr){m_address = addr;}; int m_check_type; //ztn 20161019 add private: uint8 m_address; //uint8 }; #endif

根据代码的注释和结构,该代码文件是一个名为`modbus_rtu.h`的头文件。它定义了一个名为`CFrameModbusRtu`的类,该类继承自`CFrameModbus`类。 该头文件中的代码包括了一些预处理指令,防止重复包含和编译错误。然后,它包含了一个名为`framemodbus.h`的头文件。 接下来,代码定义了一些宏常量,用于指定校验方式,如CRC校验、LRC校验和Sum校验。 接下来是`CFrameModbusRtu`类的声明。该类具有默认构造函数、复制构造函数和析构函数。它还继承了一些虚函数,并重写了这些虚函数。其中包括获取最大帧长度和最小帧长度、验证帧的有效性、编码和解码帧数据等。 该类还包含了一些私有成员变量,如地址(`m_address`)和校验方式(`m_check_type`)。 最后,代码使用`#endif`结束了条件编译指令。 总之,该代码文件定义了一个用于处理Modbus RTU协议的帧的类,并提供了一些相关功能和方法。

相关推荐

class SimpleHandler : public CefClient, public CefDisplayHandler, public CefLifeSpanHandler, public CefLoadHandler, public CefKeyboardHandler, public CefRequestHandler{ public: explicit SimpleHandler(bool use_views); ~SimpleHandler(); // Provide access to the single global instance of this object. static SimpleHandler* GetInstance(); // CefClient methods: virtual CefRefPtr<CefDisplayHandler> GetDisplayHandler() override { return this; } virtual CefRefPtr<CefLifeSpanHandler> GetLifeSpanHandler() override { return this; } virtual CefRefPtr<CefLoadHandler> GetLoadHandler() override { return this; } // CefDisplayHandler methods: virtual void OnTitleChange(CefRefPtr<CefBrowser> browser, const CefString& title) override; // CefLifeSpanHandler methods: virtual void OnAfterCreated(CefRefPtr<CefBrowser> browser) override; virtual bool DoClose(CefRefPtr<CefBrowser> browser) override; virtual void OnBeforeClose(CefRefPtr<CefBrowser> browser) override; // CefLoadHandler methods: virtual void OnLoadError(CefRefPtr<CefBrowser> browser, CefRefPtr<CefFrame> frame, ErrorCode errorCode, const CefString& errorText, const CefString& failedUrl) override; // Request that all existing browser windows close. void CloseAllBrowsers(bool force_close); bool IsClosing() const { return is_closing_; } // Returns true if the Chrome runtime is enabled. static bool IsChromeRuntimeEnabled(); private: // Platform-specific implementation. void PlatformTitleChange(CefRefPtr<CefBrowser> browser, const CefString& title); // True if the application is using the Views framework. const bool use_views_; // List of existing browser windows. Only accessed on the CEF UI thread. typedef std::list<CefRefPtr<CefBrowser>> BrowserList; BrowserList browser_list_; bool is_closing_; virtual CefRefPtr<CefKeyboardHandler> GetKeyboardHandler() override { return this; } // CefKeyboardHandler methods bool OnPreKeyEvent(CefRefPtr<CefBrowser> browser, const CefKeyEvent& event, CefEventHandle os_event, bool* is_keyboard_shortcut) override; // Include the default reference counting implementation. bool OnCertificateError(CefRefPtr<CefBrowser> browser, ErrorCode cert_error, const CefString& request_url, CefRefPtr<CefSSLInfo> ssl_info, CefRefPtr<CefCallback> callback) override; IMPLEMENT_REFCOUNTING(SimpleHandler); }; OnCertificateError未触发

请解释下这段代码namespace cros { // This class interfaces with the Google3 auto-framing library: // http://google3/chromeos/camera/lib/auto_framing/auto_framing_cros.h class AutoFramingClient : public AutoFramingCrOS::Client { public: struct Options { Size input_size; double frame_rate = 0.0; uint32_t target_aspect_ratio_x = 0; uint32_t target_aspect_ratio_y = 0; }; // Set up the pipeline. bool SetUp(const Options& options); // Process one frame. |buffer| is only used during this function call. bool ProcessFrame(int64_t timestamp, buffer_handle_t buffer); // Return the stored ROI if a new detection is available, or nullopt if not. // After this call the stored ROI is cleared, waiting for another new // detection to fill it. std::optional<Rect<uint32_t>> TakeNewRegionOfInterest(); // Gets the crop window calculated by the full auto-framing pipeline. Rect<uint32_t> GetCropWindow(); // Tear down the pipeline and clear states. void TearDown(); // Implementations of AutoFramingCrOS::Client. void OnFrameProcessed(int64_t timestamp) override; void OnNewRegionOfInterest( int64_t timestamp, int x_min, int y_min, int x_max, int y_max) override; void OnNewCropWindow( int64_t timestamp, int x_min, int y_min, int x_max, int y_max) override; void OnNewAnnotatedFrame(int64_t timestamp, const uint8_t* data, int stride) override; private: base::Lock lock_; std::unique_ptr<AutoFramingCrOS> auto_framing_ GUARDED_BY(lock_); std::unique_ptr<CameraBufferPool> buffer_pool_ GUARDED_BY(lock_); std::map<int64_t, CameraBufferPool::Buffer> inflight_buffers_ GUARDED_BY(lock_); std::optional<Rect<uint32_t>> region_of_interest_ GUARDED_BY(lock_); Rect<uint32_t> crop_window_ GUARDED_BY(lock_); }; } // namespace

最新推荐

recommend-type

卫星网络容器仿真平台+TC流量控制+SRS&amp;ffmpeg推流.zip

卫星网络容器仿真平台+TC流量控制+SRS&amp;ffmpeg推流
recommend-type

基于AI框架的智能工厂设计思路.pptx

基于AI框架的智能工厂设计思路.pptx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到