利用face_recognition,让Faceforensics++数据集中的每个视频生成50张图片的完整代码
时间: 2024-10-21 07:09:40 浏览: 29
利用`face_recognition`库处理`FaceForensics++`数据集并从每个视频中提取50帧作为图片,你需要首先安装必要的库,然后按照以下步骤编写Python代码:
1. 安装所需库:
```bash
pip install face_recognition opencv-python numpy
```
2. 导入所需的库,并读取视频:
```python
import cv2
import os
from face_recognition import face_locations, load_image_file
# 路径替换为你的FaceForensics++数据集路径
data_dir = "path_to_FaceForensics++_dataset"
output_dir = "path_to_output_images"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
```
3. 创建一个函数来处理视频并提取帧:
```python
def extract_frames(video_path, output_folder, frame_count=50):
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
print(f"Error opening {video_path}")
return
frame_count_per_video = min(frame_count, int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)))
for i in range(frame_count_per_video):
ret, frame = video_capture.read()
# 检查帧是否成功读取
if ret:
save_path = os.path.join(output_folder, f"{os.path.basename(video_path).split('.')[0]}_{i}.jpg")
cv2.imwrite(save_path, frame)
else:
break
video_capture.release()
# 遍历每个视频文件
for root, dirs, files in os.walk(data_dir):
for file in files:
if file.endswith(".mp4"):
video_file = os.path.join(root, file)
output_subfolder = os.path.join(output_dir, os.path.relpath(root, data_dir))
extract_frames(video_file, output_subfolder)
```
这段代码会遍历FaceForensics++数据集中所有的.mp4视频文件,每视频提取出50张连续的图片,并保存到指定的输出目录下。
阅读全文