centeros python设置源
时间: 2023-08-31 20:02:46 浏览: 144
CentOS Python设置源是指在CentOS系统中配置Python的软件源,以便能够使用最新的Python软件包。
1. 首先,打开终端并以root用户身份登录。
2. 安装CentOS软件源:
输入命令`yum install epel-release`,按回车键执行。
3. 安装Python软件源:
输入命令`yum install centos-release-scl`,按回车键执行。
4. 更新软件包缓存:
输入命令`yum update`,按回车键执行。
5. 安装Python:
输入命令`yum install rh-python38`,按回车键执行。
6. 确认Python安装成功:
输入命令`python3 --version`,按回车键执行。如果出现Python的版本信息,说明安装成功。
7. 设置Python软件源:
输入命令`scl enable rh-python38 bash`,按回车键执行。
8. 验证Python源设置:
输入命令`which python3`,按回车键执行。如果返回的路径中包含"/opt/rh/rh- python38/root/usr/bin/python3",说明Python源设置成功。
通过以上步骤,你已经成功设置了CentOS的Python源。这将使你能够方便地更新和安装Python软件包,确保你使用的是最新版本的Python。
相关问题
python运行飞机大战的源代码
很抱歉,我无法提供您直接运行的源代码,但我可以给你提供一个基础代码框架,您可以在此基础上进行修改和完善。
```
import pygame
import random
import os
# 初始化 pygame
pygame.init()
# 定义游戏窗口大小
WIDTH, HEIGHT = 480, 700
screen = pygame.display.set_mode((WIDTH, HEIGHT))
# 加载游戏背景图
background_img = pygame.image.load(os.path.join('images', 'background.png'))
# 加载玩家飞机图
player_img = pygame.image.load(os.path.join('images', 'player.png'))
# 加载敌机图
enemy_imgs = []
enemy_imgs.append(pygame.image.load(os.path.join('images', 'enemy1.png')))
enemy_imgs.append(pygame.image.load(os.path.join('images', 'enemy2.png')))
enemy_imgs.append(pygame.image.load(os.path.join('images', 'enemy3.png')))
# 加载子弹图
bullet_img = pygame.image.load(os.path.join('images', 'bullet.png'))
# 设置游戏字体
font = pygame.font.SysFont('arial', 30)
# 定义玩家飞机类
class Player(pygame.sprite.Sprite):
def __init__(self):
super().__init__()
self.image = player_img
self.rect = self.image.get_rect()
self.rect.centerx = WIDTH // 2
self.rect.bottom = HEIGHT - 10
self.speed_x = 0
def update(self):
self.rect.x += self.speed_x
if self.rect.left < 0:
self.rect.left = 0
if self.rect.right > WIDTH:
self.rect.right = WIDTH
def shoot(self):
bullet = Bullet(self.rect.centerx, self.rect.top)
all_sprites.add(bullet)
bullets.add(bullet)
# 定义敌机类
class Enemy(pygame.sprite.Sprite):
def __init__(self):
super().__init__()
self.image_orig = random.choice(enemy_imgs)
self.image_orig.set_colorkey((0, 0, 0))
self.image = self.image_orig.copy()
self.rect = self.image.get_rect()
self.rect.x = random.randrange(WIDTH - self.rect.width)
self.rect.y = random.randrange(-100, -40)
self.speed_y = random.randrange(1, 8)
self.speed_x = random.randrange(-3, 3)
self.rot = 0
self.rot_speed = random.randrange(-8, 8)
self.last_update = pygame.time.get_ticks()
def rotate(self):
now = pygame.time.get_ticks()
if now - self.last_update > 50:
self.last_update = now
self.rot = (self.rot + self.rot_speed) % 360
new_image = pygame.transform.rotate(self.image_orig, self.rot)
old_center = self.rect.center
self.image = new_image
self.rect = self.image.get_rect()
self.rect.center = old_center
def update(self):
self.rotate()
self.rect.x += self.speed_x
self.rect.y += self.speed_y
if self.rect.top > HEIGHT + 10 or self.rect.left < -25 or self.rect.right > WIDTH + 20:
self.kill()
# 定义子弹类
class Bullet(pygame.sprite.Sprite):
def __init__(self, x, y):
super().__init__()
self.image = bullet_img
self.rect = self.image.get_rect()
self.rect.centerx = x
self.rect.bottom = y
self.speed_y = -10
def update(self):
self.rect.y += self.speed_y
if self.rect.bottom < 0:
self.kill()
# 定义游戏循环
all_sprites = pygame.sprite.Group()
enemies = pygame.sprite.Group()
bullets = pygame.sprite.Group()
player = Player()
all_sprites.add(player)
for i in range(8):
enemy = Enemy()
all_sprites.add(enemy)
enemies.add(enemy)
score = 0
running = True
while running:
# 事件处理
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
player.speed_x = -5
elif event.key == pygame.K_RIGHT:
player.speed_x = 5
elif event.key == pygame.K_SPACE:
player.shoot()
elif event.type == pygame.KEYUP:
if event.key == pygame.K_LEFT and player.speed_x < 0:
player.speed_x = 0
elif event.key == pygame.K_RIGHT and player.speed_x > 0:
player.speed_x = 0
# 更新游戏状态
all_sprites.update()
# 检测敌机和子弹之间的碰撞
hits = pygame.sprite.groupcollide(enemies, bullets, True, True)
for hit in hits:
score += 10
enemy = Enemy()
all_sprites.add(enemy)
enemies.add(enemy)
# 检测玩家飞机和敌机之间的碰撞
hits = pygame.sprite.spritecollide(player, enemies, False)
if hits:
running = False
# 绘制游戏界面
screen.fill((0, 0, 0))
screen.blit(background_img, (0, 0))
all_sprites.draw(screen)
score_text = font.render('Score: {}'.format(score), True, (255, 255, 255))
screen.blit(score_text, (10, 10))
pygame.display.flip()
# 退出游戏
pygame.quit()
```
您需要将上述代码复制到您的 Python 环境中,并确保已经安装了 Pygame 库。然后,您可以运行代码,开始游戏。
用3个不同角度的usb相机对多种物体进行拍摄并使用yolov7源代码的detect.py进行检测,针对拍摄过程中出现的多种物体产生的遮挡问题,对拍摄的图像进行结果融合,对各个角度拍摄的相机赋予权重,得到检测种类最多且设置信度最高的图形的具体代码python
好的,下面是一个简单的Python示例代码,用于实现多角度图像的融合和物体检测。请注意,这只是一个简单的示例,你需要根据你的具体需求进行修改和优化。
```
import cv2
import numpy as np
import argparse
import os
# 定义图像融合函数
def weighted_fusion(imgs, weights):
assert len(imgs) == len(weights), 'The length of images and weights must be the same.'
h, w, c = imgs[0].shape
fusion_img = np.zeros((h, w, c), dtype=np.float32)
for i, img in enumerate(imgs):
fusion_img += img * weights[i]
fusion_img = np.clip(fusion_img, 0, 255).astype(np.uint8)
return fusion_img
# 定义命令行参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", required=True, help="path to input image directory")
ap.add_argument("-o", "--output", required=True, help="path to output directory")
ap.add_argument("-t", "--threshold", type=float, default=0.5, help="confidence threshold for object detection")
args = vars(ap.parse_args())
# 加载YOLOv7模型
net = cv2.dnn.readNetFromDarknet("yolov7.cfg", "yolov7.weights")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# 定义类别标签
classes = ["person", "car", "bus", "truck"]
# 定义输入图像路径和权重
image_paths = [os.path.join(args["input"], "image_1.jpg"),
os.path.join(args["input"], "image_2.jpg"),
os.path.join(args["input"], "image_3.jpg")]
weights = [0.4, 0.3, 0.3]
# 加载图像并进行融合
images = []
for image_path in image_paths:
image = cv2.imread(image_path)
images.append(image)
fusion_img = weighted_fusion(images, weights)
# 对融合后的图像进行物体检测
blob = cv2.dnn.blobFromImage(fusion_img, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
outputs = net.forward(output_layers)
# 处理检测结果
boxes = []
confidences = []
class_ids = []
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > args["threshold"]:
center_x = int(detection[0] * fusion_img.shape[1])
center_y = int(detection[1] * fusion_img.shape[0])
w = int(detection[2] * fusion_img.shape[1])
h = int(detection[3] * fusion_img.shape[0])
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# NMS非极大值抑制
indices = cv2.dnn.NMSBoxes(boxes, confidences, args["threshold"], 0.4)
# 显示检测结果
for i in indices:
i = i[0]
box = boxes[i]
x, y, w, h = box
label = classes[class_ids[i]]
confidence = confidences[i]
color = (0, 255, 0)
cv2.rectangle(fusion_img, (x, y), (x + w, y + h), color, 2)
cv2.putText(fusion_img, "{}: {:.2f}".format(label, confidence), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# 保存结果
cv2.imwrite(os.path.join(args["output"], "result.jpg"), fusion_img)
```
以上代码假设你已经准备好了三个角度的图像,分别为`image_1.jpg`、`image_2.jpg`和`image_3.jpg`,存放在一个名为`input`的文件夹中。你需要将代码中的`yolov7.cfg`和`yolov7.weights`替换为你自己的YOLOv7模型。运行代码后,会将检测结果保存在一个名为`result.jpg`的文件中,存放在一个名为`output`的文件夹中。
阅读全文