python朴素贝叶斯代码分析

时间: 2023-10-17 14:35:41 浏览: 59
这段代码是一个使用Python实现朴素贝叶斯算法的示例。首先,从sklearn库中导入了GaussianNB类和train_test_split函数,并从sklearn.datasets中导入了load_iris函数以加载iris数据集。然后,通过load_iris()函数获取了数据和目标标签。接下来,使用train_test_split函数将数据集划分为训练集和测试集。然后,创建了一个GaussianNB模型对象。之后,使用fit函数对模型进行训练,传入训练集的特征和标签。然后,使用predict函数对测试集进行预测,得到预测结果y_pred。最后,通过计算准确率来评估模型的性能,计算的方法是将预测结果和真实标签进行比较,并统计预测正确的样本数占总样本数的比例。最后打印出准确率。 朴素贝叶斯(Naive Bayes,NB)是一种基于贝叶斯定理的分类算法。它是一种简单快速的算法,常用于文本分类、垃圾邮件过滤等任务。 朴素贝叶斯估计是基于贝叶斯定理和特征条件独立分布假设的分类方法。首先,根据特征条件独立的假设学习输入/输出的联合概率分布。然后,基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [朴素贝叶斯详解,并用python实现朴素贝叶斯](https://blog.csdn.net/q6115759/article/details/131045741)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [python编写朴素贝叶斯用于文本分类](https://download.csdn.net/download/weixin_38706100/13771023)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

相关推荐

最新推荐

python实现基于朴素贝叶斯的垃圾分类算法

主要为大家详细介绍了python实现基于朴素贝叶斯的垃圾分类算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

Python实现的朴素贝叶斯分类器示例

主要介绍了Python实现的朴素贝叶斯分类器,结合具体实例形式分析了基于Python实现的朴素贝叶斯分类器相关定义与使用技巧,需要的朋友可以参考下

朴素贝叶斯分类算法原理与Python实现与使用方法案例

主要介绍了朴素贝叶斯分类算法原理与Python实现与使用方法,结合具体实例形式分析了朴素贝叶斯分类算法的概念、原理、实现流程与相关操作技巧,需要的朋友可以参考下

基于朴素贝叶斯算法的垃圾邮件分类方法研究

该论文中详细介绍了基于朴素贝叶斯的垃圾邮件分类过程,以及五折交叉验证的评价指标,并包含完整的代码,python格式,是一个学习朴素贝叶斯方法不错的实例。

VL6180 常规和放大测距下的参数对比数据(含驱动及模拟iic)

VL6180驱动 模拟IIC 语言 八位单片机适用

MRP与ERP确定订货批量的方法.pptx

MRP与ERP确定订货批量的方法.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

数据可视化在统计分析中的重要性

# 1. 数据可视化的概念与意义 在数据科学和统计分析领域,数据可视化作为一种强大的工具,扮演着至关重要的角色。本章将介绍数据可视化的概念与意义,探讨数据可视化与统计分析的关系,以及数据可视化的作用与优势。 #### 1.1 数据可视化的定义 数据可视化是指利用图形、图表、地图等视觉元素来直观呈现数据信息的过程。它通过视觉化的方式展示数据,帮助人们更直观地理解数据的含义和规律。数据可视化的目的在于让人们能够快速、清晰地认识数据,发现数据中的模式和规律,同时也能够帮助人们传达和交流数据所包含的信息。 #### 1.2 数据可视化的作用与优势 数据可视化的作用包括但不限于: - 使复杂数据变

coxph模型的summary函数以后得到的是什么,分别分析一下

coxph模型是用来拟合生存分析数据的模型,它可以用来评估某些预测变量对于生存时间的影响。在R语言中,当我们用coxph函数拟合模型后,可以使用summary函数来查看模型的摘要信息。 使用summary函数得到的是一个类似于表格的输出结果,其中包含了以下信息: 1. Model:显示了使用的模型类型,这里是Cox Proportional Hazards Model。 2. Call:显示了生成模型的函数及其参数。 3. n:数据集中观测值的数量。 4. Events:数据集中事件(即生存时间结束)的数量。 5. Log-likelihood:给定模型下的对数似然值。 6. C

oracle教程07plsql高级01.pptx

oracle教程07plsql高级01.pptx