支持向量机预测matlab代码
时间: 2024-03-30 22:32:52 浏览: 248
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,用于分类和回归问题。在MATLAB中,可以使用SVM工具箱来实现支持向量机的预测。
以下是一个简单的MATLAB代码示例,用于使用支持向量机进行分类预测:
```matlab
% 导入数据
data = load('data.mat');
X = data.X; % 特征矩阵
y = data.y; % 标签向量
% 划分训练集和测试集
train_ratio = 0.8; % 训练集比例
train_size = round(train_ratio * size(X, 1));
X_train = X(1:train_size, :);
y_train = y(1:train_size);
X_test = X(train_size+1:end, :);
y_test = y(train_size+1:end);
% 训练支持向量机模型
svm_model = fitcsvm(X_train, y_train);
% 预测测试集
y_pred = predict(svm_model, X_test);
% 计算准确率
accuracy = sum(y_pred == y_test) / numel(y_test);
disp(['Accuracy: ', num2str(accuracy)]);
```
请注意,上述代码中的"data.mat"是一个包含特征矩阵X和标签向量y的MAT文件。你需要根据你的数据格式进行相应的修改。
阅读全文