python实现手写数字识别算法代码
时间: 2024-10-16 16:02:38 浏览: 25
在Python中实现手写数字识别,通常会用到机器学习库如TensorFlow或Keras,结合深度学习中的卷积神经网络(Convolutional Neural Networks, CNN)。下面是一个简化的MNIST数据集上的手写数字识别示例,使用了Keras库:
```python
# 导入必要的库
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 数据预处理
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
x_train = x_train / 255.0
x_test = x_test / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# 构建模型
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))
# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
阅读全文