As illustrated in Fig. 1, we consider the general layout of HetNets, where each macro-BS serves multiple UE devices and contains a few backhaul-constrained small BSs within its range. Since the small BSs are backhaul-constrained, when UEs are offloaded to a small BS, the small BS may be overloaded when the number of serving UE devices exceeds its capacity (e.g., the small BS identified by the dotted line in Fig. 1). In this scenario, the overloaded small BS cannot provide the serving UEs with the expected QoS. Therefore, the backhaul capacity must be considered as a limitation in the design of the user association algorithm.翻译
时间: 2024-04-22 12:26:56 浏览: 168
如1所示,我们考虑HetNets的一般布局,其中每个宏基站为多个UE设备提供服务,并在其范围内包含一些受后向链路限制的小型基站。由于小型基站受到后向链路的限制,当UE设备被离载到小型基站时,当服务的UE设备数量超过其容量时(例如,图1中由虚线标识的小型基站),小型基站可能会超载。在这种情况下,超载的小型基站无法为服务的UE设备提供预期的QoS。因此,在设计用户关联算法时必须考虑后向链路容量作为限制因素。
相关问题
翻译This SiO2 shell is a key component in the mechanism for reversible actuation, as illustrated by finite element analysis (FEA) in Fig. 1C. An increase in temperature transforms the SMA (nitinol) from the martensitic to the austenitic phase, causing the 3D structure to flatten into a 2D shape. The responses of the SMA elements at the joints act as driving forces to deform the PI skeleton. This process also elastically deforms the SiO2 shell, resulting in a counter force that limits the magnitude of the deformation. The change in shape ceases when the forces from the shell balance those from the joints (right frame in Fig. 1C). Upon a reduction in temperature, the SMA changes from the austenitic back to the martensitic phase, thereby reducing the force produced by the SMA at the joints to zero. The elastic forces associated with the shell then push the entire system back to the original 3D geometry (left frame in Fig. 1C). Figure S3A simulates the moments generated by the SMA and the SiO2 shell. In the FEA model, the SiO2 shell appears on both the outer and inner surfaces of the 3D robot, consistent with experiments (fig. S3B). Although a single layer of the SiO2 shell at the outer or inner surface can also provide restoring force, the double-layer shell structure follows naturally from the conformal deposition process. This actuation scheme allows for reversible shape transformations using a one-way shape memory material. Without the shell, the structure only supports a single change in shape, from 3D to 2D, as illustrated in fig. S3C. Figure 1D shows optical images of a freestanding 3D peekytoe crab on the edge of a coin, highlighting the preserved 3D geometry enabled by the SiO2 shell after release from the elastomer substrate. Other 3D structures in geometries that resemble baskets, circular helices, and double-floor helices also exhibit high shape storage ratios (>85%) after cycles of heating and cooling (fig. S4). This ratio (s) is defined as s = 1 − |L1 − L0|/L0 × 100%, where L0 and L1 are the distances between the bonding sites at both ends at the initial stage and subsequent stages, respectively
这个SiO2壳是可逆作用机制的关键组成部分,如图1C所示的有限元分析所示。温度的升高将SMA(尼钛)从马氏体相转变为奥氏体相,导致3D结构变成2D形状。连接处SMA元件的响应作为变形PI骨架的驱动力。这个过程也会弹性变形SiO2壳,产生抵消变形幅度的对抗力。当壳体受力平衡连接处的力时,形状的变化停止(图1C右侧)。温度降低时,SMA从奥氏体相变回马氏体相,因此连接处由SMA产生的力减少到零。与壳体相关的弹性力将整个系统推回原始的3D几何形状(图1C左侧)。图S3A模拟了SMA和SiO2壳体产生的力矩。在有限元分析模型中,SiO2壳体出现在3D机器人的外表面和内表面,与实验结果一致(图S3B)。虽然在外表面或内表面只有一个SiO2壳层也可以提供恢复力,但双层壳体结构自然地遵循共形沉积过程。这种作用机制使用单向形状记忆材料实现可逆形状转换。没有壳体,结构只支持从3D到2D的单次形状变化,如图S3C所示。图1D显示了一只自由站立的3D Peekytoe蟹在硬币边缘的光学图像,突出了SiO2壳在从弹性体基底释放后保留的3D几何形状。几何形状类似于篮子、圆螺旋和双层螺旋的其他3D结构在加热和冷却循环后也表现出高形状存储比率(>85%)(图S4)。这个比率(εs)定义为εs = 1-|L1-L0|/L0×100%,其中L0和L1分别是初始阶段和随后阶段两端结合点之间的距离。
Rab GTPases serve as master regulators of membrane trafficking. They can be activated by guanine nucleotide exchange factors (GEF) and be inactivated by GTPase-activating proteins (GAPs). The roles of some GAPs have been explored in Saccharomyces cerevisiae, but are largely unknown in filamentous fungi. Here, we investigated the role of GAP Gyp3 gene, an ortholog of S. cerevisiae Gyp3, in an entomopathogenic fungus, Metarhizium acridum. We found that MaGyp3 is mainly localized to the endoplasmic reticulum (ER) of vegetative hyphae, nuclei of mature conidia, and both ER and nuclei in invasive hyphae. Lack of MaGyp3 caused a decreased tolerance to hyperosmotic stress, heat-shock and UV-B radiation. Moreover, the ΔMaGyp3 mutant showed a significantly decreased pathogenicity owing to delayed germination, reduced appressorium-mediated penetration and impaired invasive growth. Loss of MaGyp3 also caused impaired fungal growth, advanced conidiation and defects in utilization of carbon and nitrogen sources, while overexpression of MaGyp3 exhibited delayed conidiation on nutrient-rich medium and conidiation pattern shift from microcycle conidiation to normal conidiation on nutrient-limited medium. Mavib-1, a tanscription factor invloved in conidiation by affecting nutrient utilizaiton, can directly bind to the promoter of MaGyp3. ΔMaGyp3 and ΔMavib-1 mutants shared similar phenotypes, and overexpression mutants of MaGyp3 and Mavib-1 (Mavib-1-OE) exhibited similar phenotypes in growth, conidiation and pathogenicity. Reintroduction of the Magyp3 driven by strong promoter gpd in ΔMavib-1 mutant recovered the defects in growth and conidiation for dysfunction of Mavib1. Taken together, our findings uncovered the role of GAP3 in a filamentous pathogenic fungus and and illustrated the upstream regulatory mechanism by direct interaction with Mavib-1.
研究表明,GAP Gyp3基因(与酵母菌S. cerevisiae Gyp3的同源基因)在害虫真菌Metarhizium acridum中发挥着重要作用。MaGyp3主要分布于营养菌丝的内质网,成熟孢子的细胞核以及侵染性菌丝的内质网和细胞核。缺乏MaGyp3导致抗高渗应激,热激和UV-B辐射能力降低,并且由于孢子萌发延迟,贴附体介导的侵入受损以及侵染性生长受限,而导致病原性大幅度降低。此外,MaGyp3缺失还导致营养菌丝生长受限,孢子产量增加以及碳氮源利用能力受损。研究发现,Mavib-1,一种参与孢子形成的转录因子,可以直接结合MaGyp3的启动子。综上所述,我们揭示了GAP3在菌丝性病原真菌中的作用,并阐明了Mavib-1通过直接与MaGyp3的互作来调节MaGyp3的上游调控机制。
阅读全文