LSTM进行时序预测
时间: 2023-12-13 18:32:30 浏览: 105
LSTM_;lstm_RunLstm_distanto5w_matlab时序_LSTM
LSTM是一种递归神经网络,常用于时序数据的建模和预测。下面是一个简单的LSTM模型的搭建过程,以进行时序预测为例:
1.导入必要的库和数据集
```python
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 读取数据集
data = pd.read_csv('data.csv')
```
2.数据预处理
```python
# 将数据集转换为numpy数组
data = data.values
# 将数据集划分为训练集和测试集
train_size = int(len(data) * 0.67)
test_size = len(data) - train_size
train, test = data[0:train_size,:], data[train_size:len(data),:]
# 将数据集转换为适合LSTM模型的格式
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# 将数据集重塑为适合LSTM模型的输入格式
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
```
3.搭建LSTM模型
```python
# 创建LSTM模型
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
```
4.使用训练好的模型进行预测
```python
# 使用训练好的模型进行预测
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# 将预测结果转换为原始数据的格式
trainPredict = np.reshape(trainPredict, (trainPredict.shape[0],))
testPredict = np.reshape(testPredict, (testPredict.shape[0],))
# 可视化预测结果
import matplotlib.pyplot as plt
plt.plot(data)
plt.plot(trainPredict)
plt.plot(testPredict)
plt.show()
```
阅读全文