4 2 6 0.001 A 5.016 2 6.016 P1 0.0 P2 0.0 1.359 1.1 A P1 2.009 1.7 A P2 0.363 2.3 B P1 1.012 2.7 B P2 0.657 2.4 P1 P2 -0.595 4.0 P1 B 根据此数据文件,用不使用Eigen库的水准间接平差完整代码得出结果

时间: 2024-01-05 14:03:23 浏览: 67
DOC

间接平差计算代码

star5星 · 资源好评率100%
根据你提供的数据文件,以下是一个不使用Eigen库的水准间接平差的完整代码示例: ```cpp #include <iostream> #include <fstream> #include <vector> #include <cmath> // 观测高差类的设计 class CElvDif { private: double _value; // 观测值 double _weight; // 权重 long _startPoint; // 起始点编号 long _endPoint; // 终点编号 public: // 构造函数 CElvDif(double value, double weight, long startPoint, long endPoint) : _value(value), _weight(weight), _startPoint(startPoint), _endPoint(endPoint) {} // 获取观测值 double getValue() const { return _value; } // 获取权重 double getWeight() const { return _weight; } // 获取起始点编号 long getStartPoint() const { return _startPoint; } // 获取终点编号 long getEndPoint() const { return _endPoint; } }; // 水准点类的设计 class CLevelPoint { private: long _index; // 水准点编号 double _eleValue; // 高程值 double _dv; // 高程值改正数(初始化为 0) bool _isKnown; // 是否为已知点 public: // 构造函数 CLevelPoint(long index, double eleValue, bool isKnown) : _index(index), _eleValue(eleValue), _dv(0.0), _isKnown(isKnown) {} // 获取水准点编号 long getIndex() const { return _index; } // 获取高程值 double getEleValue() const { return _eleValue; } // 设置高程值 void setEleValue(double value) { _eleValue = value; } // 获取高程值改正数 double getDv() const { return _dv; } // 设置高程值改正数 void setDv(double value) { _dv = value; } // 是否为已知点 bool isKnown() const { return _isKnown; } }; // 水准平差计算类的设计 class CElevationNet { private: int numElvDif; // 观测值(高差)总数 int numPoints; // 控制网中点的数目 int numKnPoint; // 控制网中已知点的数目 double sigma0; // 验前单位权中误差 std::vector<CElvDif> _edVec; // 观测值数组 std::vector<CLevelPoint> _lpVec; // 高程值数组 public: // 构造函数 CElevationNet() : numElvDif(0), numPoints(0), numKnPoint(0), sigma0(0.0) {} // 读取数据文件 bool readDataFile(const std::string& filename) { std::ifstream file(filename); if (!file.is_open()) { std::cout << "Failed to open file: " << filename << std::endl; return false; } file >> numPoints >> numKnPoint >> numElvDif >> sigma0; // 读取已知点的信息 for (int i = 0; i < numKnPoint; i++) { long index; double eleValue; file >> index >> eleValue; _lpVec.push_back(CLevelPoint(index, eleValue, true)); } // 读取未知点的信息 for (int i = 0; i < numPoints - numKnPoint; i++) { long index; double eleValue; file >> index >> eleValue; _lpVec.push_back(CLevelPoint(index, eleValue, false)); } // 读取观测高差的信息 for (int i = 0; i < numElvDif; i++) { double value, weight; long startPoint, endPoint; file >> value >> weight >> startPoint >> endPoint; _edVec.push_back(CElvDif(value, weight, startPoint, endPoint)); } file.close(); return true; } // 水准平差计算 void elevationAdjustment() { // 构建法方程系数矩阵A和常数项b std::vector<std::vector<double>> A(numElvDif + numKnPoint, std::vector<double>(numPoints - numKnPoint, 0.0)); std::vector<double> b(numElvDif + numKnPoint, 0.0); // 构建误差方程 int row = 0; for (const auto& elvDif : _edVec) { long startPoint = elvDif.getStartPoint(); long endPoint = elvDif.getEndPoint(); double weight = elvDif.getWeight(); double value = elvDif.getValue(); if (_lpVec[startPoint - 1].isKnown() && _lpVec[endPoint - 1].isKnown()) { // 已知-已知高差观测 double eleStart = _lpVec[startPoint - 1].getEleValue(); double eleEnd = _lpVec[endPoint - 1].getEleValue(); double residual = eleStart - eleEnd + value; b[row] = residual * weight; } else { // 未知-已知高差观测 if (_lpVec[startPoint - 1].isKnown()) { // 起点为已知点 A[row][startPoint - numKnPoint - 1] = 1.0; b[row] = _lpVec[startPoint - 1].getEleValue() + value; } else if (_lpVec[endPoint - 1].isKnown()) { // 终点为已知点 A[row][endPoint - numKnPoint - 1] = -1.0; b[row] = _lpVec[endPoint - 1].getEleValue() - value; } } row++; } // 构建法方程和常数项 for (int i = 0; i < numKnPoint; i++) { A[row][i] = 1.0; b[row] = _lpVec[i].getEleValue(); row++; } // 解算法方程 std::vector<double> x(numPoints - numKnPoint, 0.0); gaussElimination(A, b, x); // 更新未知点的高程值 for (int i = numKnPoint; i < numPoints; i++) { _lpVec[i].setEleValue(x[i - numKnPoint]); } } // 高斯消元法解方程 void gaussElimination(const std::vector<std::vector<double>>& A, const std::vector<double>& b, std::vector<double>& x) { int n = A.size(); std::vector<std::vector<double>> augmentedMatrix(n, std::vector<double>(n + 1, 0.0)); // 构建增广矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { augmentedMatrix[i][j] = A[i][j]; } augmentedMatrix[i][n] = b[i]; } // 高斯消元法求解 for (int i = 0; i < n - 1; i++) { // 首元素非零处理 if (augmentedMatrix[i][i] == 0) { int j = i + 1; while (j < n && augmentedMatrix[j][i] == 0) { j++; } if (j == n) { std::cout << "Error: Singular matrix!" << std::endl; return; } std::swap(augmentedMatrix[i], augmentedMatrix[j]); } for (int j = i + 1; j < n; j++) { double factor = augmentedMatrix[j][i] / augmentedMatrix[i][i]; for (int k = i; k <= n; k++) { augmentedMatrix[j][k] -= factor * augmentedMatrix[i][k]; } } } // 回代求解 for (int i = n - 1; i >= 0; i--) { x[i] = augmentedMatrix[i][n] / augmentedMatrix[i][i]; for (int j = i - 1; j >= 0; j--) { augmentedMatrix[j][n] -= augmentedMatrix[j][i] * x[i]; } } } // 输出结果 void printResults() const { std::cout << "Elevation Adjustment Results:" << std::endl; // 输出已知点的高程值 std::cout << "Known Points: " << std::endl; for (const auto& point : _lpVec) { if (point.isKnown()) { std::cout << "Point " << point.getIndex() << ": " << point.getEleValue() << std::endl; } } // 输出未知点的高程值 std::cout << "Unknown Points: " << std::endl; for (const auto& point : _lpVec) { if (!point.isKnown()) { std::cout << "Point " << point.getIndex() << ": " << point.getEleValue() << std::endl; } } // 计算未知点高程值的精度估计 double sigma_a = sqrt(sigma0 * sigma0 / (numElvDif - numPoints + numKnPoint)); std::cout << "Standard Deviation: " << sigma_a << std::endl; } }; int main() { CElevationNet elevationNet; // 读取数据文件 if (!elevationNet.readDataFile("data.txt")) { return 0; } // 进行水准平差计算 elevationNet.elevationAdjustment(); // 输出结果 elevationNet.printResults(); return 0; } ``` 请将上述代码保存为一个名为 `elevation_adjustment.cpp` 的文件,并将数据文件命名为 `data.txt` 并放在同一目录下。然后编译并运行该程序,即可得到水准平差的结果。
阅读全文

相关推荐

最新推荐

recommend-type

Windows10安装IDEA 2020.1.2的方法步骤

安装 IDEA 2020.1.2 在 Windows 10 环境下的方法步骤 一、安装 IDEA 2020.1.2 的准备工作 在开始安装 IDEA 2020.1.2 之前,需要下载安装包。可以从 JetBrains 官方网站下载 IDEA 2020.1.2 的安装包,也可以从其他...
recommend-type

解决IDEA2020.1.2IDEA打不开的问题(最新分享)

找到IDEA的安装目录,通常在Windows系统下位于`C:\Program Files\JetBrains\IntelliJ IDEA 2020.1.2`。在这个目录下,有两个批处理文件:`format.bat`和`idea.bat`。`format.bat`用于格式化IDEA的工作区,而`idea....
recommend-type

PCIe M.2规范 PCI Express M.2 Specification Revision1.0

PCIe M.2规范,全称为PCI Express M.2 Specification Revision 1.0,是PCI-SIG(Peripheral Component Interconnect Special Interest Group)发布的一份官方技术文档,详细阐述了PCI Express(PCIe)在M.2接口上的...
recommend-type

imx6 emmc分区.docx

例如,可以将 zImage 和 dtbs 烧写到 mmcblk2p1 分区,而将 rootfs 烧写到 mmcblk2p2 分区。 此外,需要注意环境变量的设置。在烧写代码时,需要将环境变量写入到 EMMC 中,以免出现 CRC 校验失败错误。 了解 EMMC...
recommend-type

对python opencv 添加文字 cv2.putText 的各参数介绍

在Python的OpenCV库中,`cv2.putText`是一个非常实用的功能,用于在图像上添加文本。这个函数的参数很多,理解它们可以帮助我们更灵活地定制文本的样式和位置。以下是对`cv2.putText`各参数的详细说明: 1. **图片...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。