vit transformer代码
时间: 2023-09-22 12:13:13 浏览: 264
图像分类:Pytorch实现Vision Transformer(ViT)进行图像分类
以下是一个简单的示例代码,用于实现Vision Transformer (ViT)的Transformer模型部分:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class PatchEmbedding(nn.Module):
def __init__(self, image_size, patch_size, in_channels, embed_dim):
super().__init__()
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = (image_size // patch_size) ** 2
self.patch_embedding = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.patch_embedding(x)
x = x.flatten(2).transpose(1, 2)
return x
class Transformer(nn.Module):
def __init__(self, embed_dim, num_heads, num_layers, hidden_dim, dropout):
super().__init__()
self.encoder_layers = nn.ModuleList([
nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=hidden_dim, dropout=dropout)
for _ in range(num_layers)
])
def forward(self, x):
for layer in self.encoder_layers:
x = layer(x)
return x
class ViT(nn.Module):
def __init__(self, image_size, patch_size, in_channels, embed_dim, num_heads, num_layers, hidden_dim, num_classes):
super().__init__()
self.patch_embedding = PatchEmbedding(image_size, patch_size, in_channels, embed_dim)
self.transformer = Transformer(embed_dim, num_heads, num_layers, hidden_dim, dropout=0.1)
self.classifier = nn.Linear(embed_dim, num_classes)
def forward(self, x):
x = self.patch_embedding(x)
x = self.transformer(x)
x = x.mean(1)
x = self.classifier(x)
return x
```
这段代码定义了一个简单的Vision Transformer模型,包括PatchEmbedding模块、Transformer模块和ViT模型。你可以根据需要进行修改和扩展。请注意,此代码只包括Transformer的模型部分,有关数据加载和训练的部分需要根据具体任务进行实现。
阅读全文