目标检测综述2023

时间: 2023-09-02 13:12:36 浏览: 127
目标检测是计算机视觉领域的重要任务,主要目标是在图像或视频中识别和定位特定物体的位置。近年来,随着深度学习的发展,目标检测取得了显著的进展。 综述2023年的目标检测技术包括以下几个方面: 1. 单阶段目标检测方法:传统的目标检测方法通常需要多个阶段,例如先生成候选框,再对框中的物体进行分类。而单阶段目标检测方法将多个步骤合并为一个网络,直接输出物体类别和位置信息。2023年,单阶段目标检测方法如YOLO、SSD等仍然是研究热点。 2. 多尺度和金字塔特征:为了解决目标在图像中尺度变化带来的挑战,研究者提出了一些多尺度和金字塔特征的方法。这些方法通过在不同层次提取特征信息来检测不同尺度的目标。 3. 端到端训练:传统的目标检测方法通常需要多个阶段的训练,而端到端训练则是指直接从原始图像到目标检测结果的一次性训练。这种方法能够简化模型的设计和训练流程,并且在一定程度上提高检测性能。 4. 弱监督目标检测:弱监督目标检测是指只使用图像级别的标签进行训练,而不需要精确的目标位置标注。这种方法在数据标注成本高昂的情况下具有重要的应用价值。 5. 目标检测数据集的发展:目标检测算法的发展离不开大规模的标注数据集。2023年,已经存在的一些常用数据集如COCO、VOC等将会持续更新和扩充,并且可能会涌现出一些新的数据集。 总的来说,2023年的目标检测技术将继续朝着更高的性能、更高的效率和更广泛的应用方向发展。
相关问题

密集目标检测研究综述

密集目标检测是目标检测领域的一个重要研究方向。目标检测任务是在给定图像中定位和识别特定目标的类别和位置。密集目标检测的目标是在图像中检测出更多的目标实例,包括目标之间的重叠和遮挡情况。密集目标检测的研究综述主要关注如何解决目标之间的重叠和遮挡问题,以及如何提高目标检测的准确性和效率。 在密集目标检测的研究中,传统的方法主要依赖于手工设计的特征和机器学习算法。这些方法通常需要大量的人工努力来提取有效的特征,并且在处理重叠和遮挡的情况时存在一定的局限性。 近年来,深度学习算法在目标检测领域取得了显著的进展。深度卷积神经网络(DCNN)通过学习图像的特征表示,能够更好地处理重叠和遮挡的情况。一些基于深度学习的密集目标检测方法已经被提出,并在各种应用场景中取得了良好的性能。 然而,密集目标检测仍然面临一些挑战。首先,由于目标之间的重叠和遮挡,目标的边界不容易准确地确定。其次,密集目标检测需要处理大量的目标实例,这对算法的效率提出了要求。此外,不同类型的目标可能具有不同的形态和外观特征,如何在不同的场景中进行泛化也是一个挑战。 未来的研究方向可以包括改进目标边界的准确性和鲁棒性,提高密集目标检测的效率,以及探索更多的深度学习模型和算法来解决不同类型目标的检测问题。通过不断的研究和创新,密集目标检测在实际应用中将发挥更大的作用。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [遥感图像目标检测研究综述](https://blog.csdn.net/weixin_43312470/article/details/124086107)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v4^insert_chatgpt"}} ] [.reference_item] - *2* *3* [基于深度卷积神经网络的目标检测研究综述](https://blog.csdn.net/m0_62870606/article/details/122873210)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v4^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

实时目标检测算法综述

实时目标检测是计算机视觉领域的一个重要研究方向,其目标是在图像或视频中实时地检测出物体并进行分类。目前,常用的实时目标检测算法主要包括基于传统机器学习的方法和基于深度学习的方法两种。 基于传统机器学习的实时目标检测算法主要包括基于滑动窗口的方法、积分图像的方法和快速级联分类器(Fast R-CNN)等。这些方法在实时性方面表现较好,但是检测精度相对较低。 基于深度学习的实时目标检测算法则主要包括基于单阶段检测器的方法和基于两阶段检测器的方法两种。其中,基于单阶段检测器的方法包括 You Only Look Once(YOLO)、Single Shot MultiBox Detector(SSD)和RetinaNet等,这些方法具有较高的检测精度和较快的检测速度;而基于两阶段检测器的方法则包括Faster R-CNN、Mask R-CNN等,这些方法在检测精度方面表现更好,但是速度相对较慢。 综上所述,基于深度学习的实时目标检测算法在检测精度和速度方面都有较好的表现,是目前研究的热点之一。

相关推荐

最新推荐

recommend-type

计算机视觉 小目标检测综述

对小目标检测算法从检测流程、算法发展、常用评价指标、面临的挑战、小目标检测算法实验、小目标检测经典算法对比等几个方向进行总结,每一个点都很清晰,适合科研者或者研究生、本科生下载阅读使用。
recommend-type

深度学习目标检测综述.docx

本资源是word文档,共9765个字,包括参考文献,按照学报格式撰写,这篇文章综述了近年来基于深度学习的目标检测的最新进展,包括传统目标检测,一阶段目标检测以及两阶段目标检测的分析,还分析了在识别任务中使用的...
recommend-type

面向目标检测的对抗样本综述

目标检测是一种广泛应用于工业控制、航空航天等安全攸关场景的重要技术。近年来,随着深度学习在目标检 测领域的应用,检测的精度得到了较大提升,但由于深度学习固有的脆弱性,使得基于深度学习的目标检测技术的...
recommend-type

基于深度学习的目标检测算法综述.docx

目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从...
recommend-type

基于视觉的目标检测与跟踪综述_尹宏鹏.pdf

基于视觉的目标检测与跟踪是图像处理、计算机视觉、模式识别等众多学科的交叉研究课题, 在视频监控、虚拟现 实、人机交互、自主导航等领域, 具有重要的理论研究意义和实际应用价值. 本文对目标检测与跟踪的发展历史...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。