基于python的天猫用户数据集及可视化分析
时间: 2024-10-21 16:08:26 浏览: 79
基于Python的天猫用户数据集通常包含用户的购物行为、浏览记录、偏好信息等大量数据,这类数据集常常用于市场研究、用户画像、推荐系统等领域。数据分析步骤可能包括数据清洗、数据探索、特征工程以及数据可视化。
首先,你会使用pandas库加载数据,例如读取CSV文件:
```python
import pandas as pd
data = pd.read_csv('tmall_user_data.csv')
```
然后,你可以对数据进行预处理,如检查缺失值、异常值,并进行适当填充或删除:
```python
data.isnull().sum() # 查看缺失值情况
data.describe() # 数据摘要统计
```
接下来,利用matplotlib或seaborn库绘制图表,展示用户活跃度、购买频率、商品类别偏好等:
```python
import matplotlib.pyplot as plt
plt.hist(data['purchase_frequency'], bins=10) # 按购买频次分组的直方图
sns.boxplot(x='category', y='total_spent', data=data) # 商品类别与消费金额的箱线图
```
为了深入理解用户行为模式,可以创建用户聚类、关联规则挖掘,甚至构建预测模型,比如使用scikit-learn库进行K-means聚类或协同过滤:
```python
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=5).fit(data[['age', 'income']])
data['cluster'] = kmeans.labels_
# 对发现的相关商品进行推荐
from mlxtend.frequent_patterns import apriori
rules = apriori(data['basket_items'], min_support=0.01, use_colnames=True)
```
阅读全文
相关推荐

















